【51Nod三级题】可能的路径

链接:

https://www.51nod.com/Challenge/Problem.html#problemId=1247

题意:

在一个无限大的二维网格上,你站在(a,b)点上,下一步你可以移动到(a + b, b), (a, a + b), (a - b, b), 或者 (a, a - b)这4个点。

给出起点坐标(a,b),以及终点坐标(x,y),问你能否从起点移动到终点。如果可以,输出"Yes",否则输出"No"。

例如:(1,1) 到 (2,3),(1,1) -> (2,1) -> (2,3)。

思路:

这道题是一道数学题,对于(a,b)-->(x,y)是可逆的,即(x,y)-->(a,b),所以可以推出如果两者均可以到达一个中间状态,则可以说明两者是可达的。

经过推演对于任意的,均有(a,b)-->(d,0),此时的d实际上就是a与b的最大公约数,又可以推出(d,0)-->(b,a),因此(a%b,b)-->(b,a%b)。

因此就是求a,b的最大公约数是否与x,y相等,如果相等则是可达的。其实根据题意,就知道,当前步和下一步的关系就是求公约数的推导过程,只是有两个方向而已,但不管是什么方向,它们俩都可以推导成(d,0)或者(0,d)的情况,所以就是判断公约数是否相等。

AC代码:

#include <bits/stdc++.h>  
#define MAX_INF 0x3f3f3f  
#define ll long long  
#define ull unsigned long long  
const int MAXN = 2e5+10;  
const int MOD = 1e9+7;  
using namespace std;  
  
ll gcd(ll a, ll b){  
    if(b==0) return a;  
    gcd(b, a%b);  
}  
   
int main(){  
    ll t, a, b, x, y;  
    cin>>t;  
    while(t--){  
        scanf("%lld%lld%lld%lld", &a, &b, &x, &y);  
        if(gcd(a, b) == gcd(x, y)) cout<<"Yes"<<"\n";  
        else cout<<"No"<<"\n";  
    }  
    return 0;  
}  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

~Lomiss~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值