链接:
https://www.51nod.com/Challenge/Problem.html#problemId=1247
题意:
在一个无限大的二维网格上,你站在(a,b)点上,下一步你可以移动到(a + b, b), (a, a + b), (a - b, b), 或者 (a, a - b)这4个点。
给出起点坐标(a,b),以及终点坐标(x,y),问你能否从起点移动到终点。如果可以,输出"Yes",否则输出"No"。
例如:(1,1) 到 (2,3),(1,1) -> (2,1) -> (2,3)。
思路:
这道题是一道数学题,对于(a,b)-->(x,y)是可逆的,即(x,y)-->(a,b),所以可以推出如果两者均可以到达一个中间状态,则可以说明两者是可达的。
经过推演对于任意的,均有(a,b)-->(d,0),此时的d实际上就是a与b的最大公约数,又可以推出(d,0)-->(b,a),因此(a%b,b)-->(b,a%b)。
因此就是求a,b的最大公约数是否与x,y相等,如果相等则是可达的。其实根据题意,就知道,当前步和下一步的关系就是求公约数的推导过程,只是有两个方向而已,但不管是什么方向,它们俩都可以推导成(d,0)或者(0,d)的情况,所以就是判断公约数是否相等。
AC代码:
#include <bits/stdc++.h>
#define MAX_INF 0x3f3f3f
#define ll long long
#define ull unsigned long long
const int MAXN = 2e5+10;
const int MOD = 1e9+7;
using namespace std;
ll gcd(ll a, ll b){
if(b==0) return a;
gcd(b, a%b);
}
int main(){
ll t, a, b, x, y;
cin>>t;
while(t--){
scanf("%lld%lld%lld%lld", &a, &b, &x, &y);
if(gcd(a, b) == gcd(x, y)) cout<<"Yes"<<"\n";
else cout<<"No"<<"\n";
}
return 0;
}