Devin、OpenDevin

Cognition公司发布了首个AI软件工程师Devin,能完成复杂的编程任务。OpenDevin开源项目致力于复制Devin的能力,通过研究和开源技术栈推动AI在编程领域的进步。文章概述了OpenDevin的开发计划,包括用户界面、架构和模型选择等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


关于 Devin

Cognition 发布了世界上第一个完全自主的人工智能软件工程师 Devin,在 SWE-bench 编码基准测试中树立了新的先进标准。只需一个提示,Devin 就能像人类软件工程师一样编写代码或创建网站。



在这里插入图片描述

Cognition 公司

Cognition 公司成立于 2023 年 11 月,是美国一家专注于推理的应用人工智能实验室。通过利用推理,他们打算开启人工智能的众多学科。
Cognition 目前由曾在谷歌 DeepMind、Cursor、Scale AI 和 Nuro 等科技巨头工作过的专业人士和领导组成。
他们已经获得了由彼得-蒂尔的创始人基金(Founders Fund)牵头的 2100 万美元。支持 Cognition 的还有 DoorDash 首席执行官托尼-徐(Tony Xu)和加密货币平台 Coinbase 创始人弗雷德-埃尔萨姆(Fred Ehrsam)等巨头。


Devin 的能力

凭借 Cognition 在长期推理和规划方面的进步,Devin 可以规划和执行需要做出数千个决策的复杂工程任务。Devin 可以在每一步都调用相关上下文,随着时间的推移不断学习,并修正错误。

Devin 配备了常用的开发者工具,包括沙盒计算环境中的 shell、代码编辑器和浏览器–人类完成工作所需的一切工具。

最后,Devin 有与用户积极协作的能力。Devin 会实时报告自己的工作进度,接受反馈,并根据需要与你一起完成设计选择。


在这里插入图片描述


关于 OpenDevin

OpenDevin 希望通过开源社区的力量复制、增强并创新 Devin。



⭐️ Research Strategy

利用 LLM 实现生产级应用的全面复制是一项复杂的工作。我们的策略包括

  1. 核心技术研究: 专注于基础研究,了解并改进代码生成和处理的技术方面。
  2. 专家能力: 通过数据整理、培训方法等提高核心组件的效率。
  3. 任务规划: 开发错误检测、代码库管理和优化功能。
  4. 评估: 建立全面的评估指标,以便更好地了解和改进我们的模型。

🛠 Technology Stack

  • 沙箱环境: 使用 Docker 和 Kubernetes 等技术确保代码的安全执行。
  • 前端界面: 开发用户友好的界面,用于监控进度和与 Devin 交互,可能会利用 React 等框架或创建 VSCode 插件,以获得更加集成的体验。

下一步

MVP demo 对我们来说迫在眉睫。以下是要做的最重要的事情:

  • 用户界面:聊天界面、演示命令的 shell、浏览器等。
  • 架构:具有稳定后台的代理框架,可读写和运行简单命令
  • 代理:能够生成 bash 脚本、运行测试等。
  • 评估:与 Devin 的评估一致的最小评估管道。

完成 MVP 的构建后,我们将转向不同主题的研究,包括基础模型、专家能力、评估、代理研究等。


使用 OpenDevin

安装

OpenDevin 仍在开发中。不过,你可以运行 alpha 版本,查看端到端的运行情况。


Requirements


首先,确定 Docker 在运行

docker ps # this should exit successfully

拉取镜像 here

docker pull ghcr.io/opendevin/sandbox:v0.1

然后启动后台:

export OPENAI_API_KEY="..."
export WORKSPACE_DIR="/path/to/your/project"
python -m pip install -r requirements.txt
uvicorn opendevin.server.listen:app --port 3000

然后在另一个终端输入:

cd frontend
npm install
npm run start -- --port 3001

你可以在 localhost:3001 看到 OpenDevin 运行


选择一个 Model

我们使用 LiteLLM, 然后你可以使用任意基础模型 运行 OpenDevin,比如 OpenAI, Claude, 和 Gemini。

LiteLLM 有以下 Providers : https://docs.litellm.ai/docs/providers

你可以设置 LLM_MODELLLM_API_KEY 来修改模型。


比如运行 Claude:

export LLM_API_KEY="your-api-key"
export LLM_MODEL="claude-3-opus-20240229"

你可以设置基础的 local/custom models:

export LLM_BASE_URL="https://localhost:3000"

你可以自定义 在向量数据库中 使用什么 embeddings

export LLM_EMBEDDING_MODEL="llama2" # can be "llama2", "openai", "azureopenai", or "local"

在命令行运行

PYTHONPATH=`pwd` python opendevin/main.py -d ./workspace/ -i 100 -t "Write a bash script that prints 'hello world'"

伊织 2024-03-28(四)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程乐园

请我喝杯伯爵奶茶~!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值