FollowYourPose - 生成可编辑、姿态可控制的人物视频


关于 FollowYourPose


摘要

生成文本可编辑、姿态可控制的人物视频是创造各种数字人的迫切需求。然而,这项任务受到了限制 由于缺乏具有配对视频姿势字幕和视频生成先验模型的综合数据集。

在这项工作中,我们设计了一种新的两阶段训练方案,可以利用容易获得的数据集(即图像姿态对和无姿态视频)和预训练的数据集 文本到图像(T2I)模型,以获得姿态可控的字符视频。

具体来说,在第一阶段,关键点-图像对仅用于可控制的文本-图像生成。我们学习了一个零初始化的卷积 对姿态信息进行编码的传统编码器。

在第二阶段,我们通过添加可学习的时间自注意和改革的跨帧自注意,通过无姿态视频数据集对上述网络的运动进行微调 块。

在我们的新设计的支持下,我们的方法成功地生成连续的姿势可控的角色视频,同时保持编辑和概念组成 预训练T2I模型的能力。代码和模型将公开提供。


🍻🍻🍻设置环境

我们的方法是使用cuda11、加速器和xformer在8a100上进行训练的。

conda create -n fupose python=3.8
conda activate fupose

pip install -r requirements.txt

为了节省内存和运行时间,A100 GPU推荐使用xformers

单击xformer安装

我们发现它的安装不稳定。你可以试试下面的轮子:

wget https://github.com/ShivamShrirao/xformers-wheels/releases/download/4c06c79/xformers-0.0.15.dev0+4c06c79.d20221201-cp38-cp38-linux_x86_64.whl
pip install xformers-0.0.15.dev0+4c06c79.d20221201-cp38-cp38-linux_x86_64.whl

我们的环境类似于Tune-A-video(官方的,非官方的)。你可以查看更多的细节。


💃💃💃培训

我们在8 A100上修复了Tune-a-video和微调稳定扩散-1.4中的错误。 要微调文本到图像的扩散模型,以生成文本到视频,请执行以下命令:

TORCH_DISTRIBUTED_DEBUG=DETAIL accelerate launch \
    --multi_gpu --num_processes=8 --gpu_ids '0,1,2,3,4,5,6,7' \
    train_followyourpose.py \
    --config="configs/pose_train.yaml" 

🕺🕺🕺推理

训练完成后,运行inference:

TORCH_DISTRIBUTED_DEBUG=DETAIL accelerate launch \
    --gpu_ids '0' \
    txt2video.py \
    --config="configs/pose_sample.yaml" \
    --skeleton_path="./pose_example/vis_ikun_pose2.mov"

你可以用mmpose来制作姿势视频,我们用HRNet来检测骨骼。你只需要运行视频演示来获得姿势视频。记得用黑色代替背景。


💃💃💃 本地 Gradio 演示

您可以在本地运行梯度演示,只需要一个 A100/3090

python app.py

那么演示在本地URL上运行: http://0.0.0.0:Port


🕺🕺🕺权重

[Stable Diffusion] Stable Diffusion 是一种潜在的文本到图像扩散模型,能够在给定任何文本输入的情况下生成逼真的图像。预训练的稳定扩散模型可以从拥抱脸下载(例如,稳定扩散v1-4)

我们还在Huggingface中提供了预训练的检查点。您可以下载它们并将它们放入 checkpoints 文件夹中来推断我们的模型。

FollowYourPose
├── checkpoints
│   ├── followyourpose_checkpoint-1000
│   │   ├──...
│   ├── stable-diffusion-v1-4
│   │   ├──...
│   └── pose_encoder.pth

💃💃💃结果

我们展示了关于各种姿势序列和文本提示的结果。

注意这个github页面中的mp4和gif文件是压缩的。 请查看我们的项目页面,获取原始视频结果的mp4文件。

在这里插入图片描述
在这里插入图片描述


2024-09-24 (二)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程乐园

请我喝杯伯爵奶茶~!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值