shift-GCN:Skeleton-Based Action Recognition with Shift Graph Convolutional Network

Skeleton-Based Action Recognition with Shift Graph Convolutional Network

CVPR2020

shift-GCN


主要特点:大幅度减少计算成本

背景:GCN-based取得成效,but GCN-based方法缺点:1)计算成本高;2)空间图和时间图感受野都是启发式预定义的,不灵活;although使用增量自适应模块增强空间图的表现力但是仍受到regular GCN的限制。

受到shift-CNN启发,我们提出shift-GCN,使用轻量级的移位操作作为2D卷积的替代,并且可以通过简单地改变移位距离来调整感受野。提出的Shift-GCN由spatial shift GCN和temporal shift GCN两部分组成。

  • spatial skeleton graph:

    对于空间骨架图,作者提出了一种空间移位图操作,将信息从相邻节点转移到当前卷积节点,而不是使用三个具有不同邻接矩阵的GCN来获得足够的感受野。通过将空间移位图操作与点卷积交错,信息在空间维度和通道维度上混合。具体来说,我们提出了两种spatial shift graph operation:

    • local shift graph operation:

      感受野receptive field由身体物理结构指定,不同的节点具有不同数量的邻居,因此分别为每个节点设计了local shift graph operation

      缺点:

      • 感受野是启发式预定义和局部化的,不适合建模骨骼之间的多样关系
      • 由于不同节点的移位操作不同,一些信息被直接丢弃
    • non-local shift graph operation:为了解决local的两个缺点,每个节点的感受野覆盖整个骨架图并自适应地学习节点之间的关系

  • temporal skeleton graph:通过在时间维度上连接连续帧来构建。

    • naive temporal shift graph operation:感受野是手动设置的。对于时间建模不是最优的:不同层可能需要不同的时间感受野;不同数据集可能需要不同的时间感受野
    • adaptive temporal shift graph operation:自适应地调整接收场,效率高

本文工作:

  1. 提出了两种spatial shift graph operation用于空间骨架图建模:non-local spatial shift graph operation在计算上是有效的,并且取得了很强的性能;
  2. 提出了两种temporal shift graph operation用于时间骨架图建模:adaptive temporal shift graph operation可以自适应地调整接收场,并且在计算复杂度上优于常规时间模型;
  3. 在基于骨架的动作识别的三个数据集上,本文提出的shift-GCN算法的计算量比现有的方法少10倍以上。

在这里插入图片描述

(二)预备工作

  1. GCN-based skeleton action recognition

    • 空间图形卷积:一般将邻接矩阵划分为三个分区:向心组、节点本身、离心组
    • 时间图形卷积:使用时间维度上regular 1D卷积作为时间图卷积,内核大小通常为9。
    • 缺点是:(1)计算量太大。(2)感受野受限,表达能力受到规则GCN结构的限制。
  2. shift-CNN

    输入特征 F ∈ R D F × D F × C {\bf{F}\in}{\Bbb{R}}^{D_F×D_F×C} FRDF×DF×C其中 D F D_F DF是特征图大小, C C C是信道大小。正则卷积核是张量 K ∈ R D K × D K × C × C ′ {\bf{K}\in}{\Bbb{R}}^{D_K×D_K×C×C'} KRDK×DK×C×C D K D_K DK是核的大小。

在这里插入图片描述

shift convolution是中枢神经系统中规则卷积的有效方法,shift convolution两个运算组成:(1)在不同方向上shift不同的通道;(2)应用点卷积来跨通道交换信息。

在这里插入图片描述

另一个优点:感受野的灵活性;可以通过简单的增加移位距离来扩大感受野而不是使用更大的卷积核和增加计算成本。让每个通道的位移值表示一系列向量,移位卷积的感受野可以表示为相反方向上每个移位向量的并集: R = { − S 1 } ∪ { − S 2 } ∪ ⋅ ⋅ ⋅ ∪ { − S C } R=\{-S_1\}∪\{-S_2\}∪···∪\{-S_C\} R={ S1}

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值