An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling

An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling

2018


文章地址https://arxiv.org/pdf/1803.01271.pdf
代码地址https://github.com/LOCUSLAB/tcn
https://blog.csdn.net/qq_33331451/article/details/104810419


Temporal Convolutional Networks(TCN)

  1. Sequence Modeling
    f : X T + 1 → Y T + 1 f:{\mathcal X}^{T+1}\rightarrow {\mathcal Y}^{T+1} f:XT+1YT+1
  2. Causal Convolutions
    tcn基于两个原则:输入与输出长度相同;未来没有可能泄露到过去。
  3. Dilated Convolutions
    1-D序列输入 x ∈ R n {\bf x}\in{\Bbb R}^n xRn,一个过滤器 f : { 0 , . . . , k − 1 } → R f:\{0,...,k-1\}\rightarrow {\Bbb R} f:{0,...,k1}R,膨胀卷积操作F F ( s ) = ( x ∗ d f ) ( s ) = ∑ i = 0 k − 1 f ( i ) ⋅ x s − d ⋅ i F(s)=({\bf x}*_df)(s)=\sum_{i=0}^{k-1}f(i)·{\bf x}_{s-d·i} F(s)=(xdf)(s)=i=0k1f(i)xsdi,其中d是膨胀系数,k是过滤器大小,s-d·i是过去的方向。d=1时是普通卷积,使用较大的膨胀能够使顶级输出表示更广泛的输入从而有效扩展了convnet的接收域。两种方法增加TCN接收域:选择较大的过滤器尺寸k,增加膨胀系数d。
    在这里插入图片描述
  4. Residual Connections
    o = A c t i v a t i o n ( x + F ( x ) ) ) o={\rm Activation}({\bf x}+{{\mathcal F(\bf x)})}) o=Activation(x+F(x)))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值