在医疗健康领域,数据的价值不言而喻。大量的医疗数据蕴含着疾病诊断、治疗方案优化、健康管理等多方面的宝贵信息。然而,医疗数据具有高度敏感性和隐私性,受到严格的法规监管。同时,医疗数据分散在医院、药企、保险公司、医疗设备厂商等众多机构中,形成数据孤岛,限制了数据的充分利用。京东作为在电商、科技等领域具有强大实力的企业,积极布局医疗健康产业。通过引入联邦学习技术,构建医疗健康类目 API 数据共享模型,京东旨在打破数据孤岛,实现医疗数据的安全、合规共享,挖掘数据的潜在商业价值,推动医疗健康产业的创新发展。
二、联邦学习技术基础
(一)联邦学习核心技术原理
- 横向联邦学习:当多个参与方的数据特征相似但样本不同时,适合采用横向联邦学习。以京东与多家医院合作构建疾病预测模型为例,不同医院拥有各自患者群体的医疗数据,包括症状、检查结果、诊断信息等。在横向联邦学习框架下,各医院在本地对数据进行预处理和特征提取,将特征数据上传至联邦学习平台。平台通过加密机制对各医院上传的数据进行聚合计算,例如在训练疾病预测模型时,基于各医院数据的特征信息共同计算模型的梯度,然后将更新后的模型参数下发给各医院,各医院再利用本地数据进行模型微调。这样,各医院在不共享原始患者数据的情况下,共同训练出一个更具泛化能力的疾病预测模型。
- 纵向联邦学习:当多个参与方的数据样本有部分重叠但特征不同时,纵向联邦学习发挥作用。假设京东与药企、保险公司合作。京东拥有用户的健康消费数据,如购买药品、医疗器械的记录,以及用户的健康行为数据;药企拥有药品研发过程中的临床试验数据、药物疗效数据;保险公司拥有用户的健康保险理赔数据、风险评估数据。在纵向联邦学习中,首先需要对各方数据进行安全的特征对齐,确定共同的用户标识(如匿名化后的用户 ID)。然后,各方在本地对自身数据进行加密处理,通过安全多方计算等技术,在加密状态下共同计算模型参数。例如,在构建个性化医疗推荐模型时,综合各方数据特征,为用户提供更精准的医疗产品和服务推荐,同时保护各方数据隐私。
- 联邦迁移学习:在医疗领域,不同机构的数据分布可能存在较大差异,联邦迁移学习则能解决这一问题。比如京东在拓展医疗健康业务过程中,可能获取到一些新领域的少量数据,而这些数据与已有的医疗数据分布不同。联邦迁移学习可以利用已有的大量医疗数据知识,结合新领域的少量数据,进行模型的迁移训练。通过迁移学习技术,将源领域(已有大量数据的领域)的知识迁移到目标领域(新领域),在不泄露数据的情况下,帮助京东快速在新的医疗业务场景中建立有效的模型,如在罕见病诊断辅助模型构建中,利用常见疾病诊断数据的知识,结合少量罕见病数据进行模型训练。
(二)联邦学习在医疗数据场景的适配性分析
- 满足数据隐私保护法规要求:医疗数据涉及患者的个人隐私,受到《健康保险流通与责任法案》(HIPAA)、我国《个人信息保护法》等严格法规监管。联邦学习通过加密技术、安全多方计算等手段,确保原始医疗数据不出本地,在满足法规对数据隐私保护要求的前提下,实现数据的联合分析与应用,避免了数据泄露带来的法律风险。
- 打破医疗数据孤岛:医疗行业中,数据分散在不同机构,导致数据无法充分整合利用。联邦学习允许各方在不共享原始数据的基础上进行合作,打破了数据孤岛。例如,医院与药企合作时,医院无需将患者的详细病历数据共享给药企,药企也无需将药物研发的核心数据提供给医院,双方通过联邦学习技术在安全的环境下共同开展研究,如联合研究某种药物在特定疾病治疗中的效果。
- 提升医疗服务质量与效率:通过联邦学习实现医疗数据共享与联合分析,能够为医疗服务带来多方面提升。在疾病诊断方面,整合多家医院的数据训练的诊断模型可以提高诊断准确率;在健康管理方面,结合京东的健康消费数据和医疗机构的健康监测数据,可以为用户提供更全面、个性化的健康管理方案,提升医疗服务的效率和质量。
三、京东医疗健康类目 API 数据共享模型解析
(一)模型架构设计
- 数据提供方层:包括医院、药企、保险公司、医疗设备厂商等。医院提供患者的病历数据、诊断数据、影像数据等;药企提供药物研发数据、临床试验数据、药物不良反应数据;保险公司提供用户的保险理赔数据、健康风险评估数据;医疗设备厂商提供设备监测数据,如可穿戴设备采集的用户生理数据。各数据提供方在本地对数据进行预处理,包括数据清洗、脱敏、特征提取等操作,确保数据质量和隐私安全。
- 联邦学习平台层:这是模型的核心部分,由京东构建和维护。平台集成了横向联邦学习、纵向联邦学习、联邦迁移学习等多种算法框架。平台负责管理参与方的加入与退出,协调各方数据的交互与计算。在数据交互过程中,采用安全加密技术,如同态加密、秘密分享等,确保数据在传输和计算过程中的安全性。平台还提供模型训练、评估、优化等功能,根据不同的业务需求,选择合适的联邦学习算法进行模型构建。例如,对于疾病诊断模型构建,可能采用横向联邦学习算法整合多家医院数据;对于个性化医疗推荐模型,采用纵向联邦学习算法结合多方数据特征。
- API 接口层:京东设计的医疗健康类目 API 接口,为数据使用方(如京东健康内部业务部门、外部合作的科研机构、医疗服务提供商等)提供统一的数据访问和模型调用接口。接口采用 RESTful 架构,具有良好的通用性和易用性。通过 API 接口,数据使用方可以根据授权获取经过联邦学习处理后的聚合数据、模型预测结果等。例如,京东健康的在线问诊业务可以通过 API 接口获取疾病预测模型的结果,辅助医生进行诊断;外部科研机构可以获取经过脱敏处理的医疗数据统计信息,用于医学研究。接口设置了严格的访问权限控制,根据数据使用方的身份和业务需求,分配不同的数据访问级别和操作权限。
- 数据使用方层:利用 API 接口获取数据和模型服务,开展各类医疗健康业务。京东健康内部的业务部门利用数据和模型优化业务流程,如优化药品推荐算法,提高用户购买转化率;外部合作的医疗服务提供商可以基于数据和模型提升服务质量,如结合疾病预测模型为用户提供预防性医疗服务;科研机构可以利用数据和模型开展医学研究,探索新的疾病治疗方法和药物研发方向。
(二)关键技术实现
- 安全多方计算在数据计算中的应用:在联邦学习过程中,安全多方计算技术确保各方数据在加密状态下进行计算。例如,在横向联邦学习训练疾病预测模型时,各医院计算本地数据的梯度后,通过安全多方计算协议,在不暴露原始梯度值的情况下进行梯度聚合。具体实现中,采用不经意传输(OT)协议、混淆电路(GC)等技术。在不经意传输协议下,发送方可以向接收方传输多个数据中的一个,但发送方不知道接收方选择了哪个数据,保证数据的保密性。混淆电路技术则将计算逻辑转化为加密电路,参与方通过交互加密数据完成计算,整个过程中原始数据不会泄露。
- 加密算法保障数据传输与存储安全:在数据传输过程中,采用 SSL/TLS 加密协议,对数据提供方上传至联邦学习平台以及平台下发至数据使用方的数据进行加密传输,防止数据被窃取或篡改。在数据存储方面,对于联邦学习过程中产生的中间数据和最终模型,使用 AES 等加密算法进行加密存储。例如,联邦学习平台存储的模型参数以加密形式保存,只有经过授权的用户在使用特定解密密钥的情况下才能访问和使用。同时,对加密密钥进行严格管理,采用密钥分层管理机制,定期更新密钥,提高数据存储的安全性。
- 模型优化与联邦学习算法调优:为了提高联邦学习模型的性能,京东对模型进行持续优化。在模型训练过程中,采用自适应学习率调整算法,根据训练过程中的损失函数变化自动调整学习率,加快模型收敛速度。同时,针对不同的医疗数据特点和业务场景,对联邦学习算法进行调优。例如,在处理大规模医疗影像数据时,对横向联邦学习算法进行优化,采用分布式计算技术,将计算任务分配到多个计算节点,提高计算效率。此外,通过增加正则化项等方式,防止模型过拟合,提高模型的泛化能力,确保模型在不同医疗机构的数据上都能有良好的表现。
(三)安全防护机制
- 数据脱敏与匿名化处理:数据提供方在将数据上传至联邦学习平台之前,对原始医疗数据进行脱敏和匿名化处理。对于患者的个人身份信息,如姓名、身份证号、联系方式等,采用替换、屏蔽等方式进行脱敏。对于病历中的敏感信息,如疾病名称、治疗方案等,在不影响数据分析价值的前提下,进行模糊化处理或采用假名替换。例如,将患者姓名替换为随机生成的匿名 ID,将具体疾病名称按照疾病分类进行模糊处理。通过数据脱敏与匿名化,进一步降低数据泄露带来的隐私风险。
- 访问权限管理与身份认证:京东医疗健康类目 API 数据共享模型建立了完善的访问权限管理体系。采用基于角色的访问控制(RBAC)模型,为不同的数据使用方和平台管理员分配不同的角色,每个角色对应特定的数据访问权限。例如,医院管理员可以管理本医院参与联邦学习的数据上传和模型下载权限;京东健康内部业务部门的数据分析人员被授予特定数据的查询和分析权限;外部科研机构根据合作协议被授予有限的数据访问权限。在身份认证方面,采用多因素认证方式,除了用户名和密码外,结合短信验证码、指纹识别、面部识别等生物特征识别技术,确保用户身份的真实性。定期更新用户密码和认证密钥,加强系统的安全性。
- 审计与监管合规性保障:建立数据使用审计机制,对数据使用方通过 API 接口访问数据和模型的行为进行实时监测和记录。审计日志包括数据访问时间、访问方身份、访问的数据内容、操作类型等信息。通过审计日志,能够及时发现异常的数据访问行为,如频繁的数据查询、未经授权的数据下载等,并采取相应的措施,如冻结账号、发出警报等。同时,京东严格遵循国内外医疗数据相关法规,如 HIPAA、我国《网络安全法》《医疗数据管理办法》等,确保数据共享模型在合法合规的框架内运行,定期接受监管机构的审查和评估,保障患者数据权益和医疗行业数据安全。