中医博大精深,知识庞杂,一个医生需要经过多年的学习和实践才能成为老中医。而大语言模型出来后,如果提供足够的数据集,就能很快训练出一个医术高超的中医。
让我们探讨大语言模型技术在中医领域的应用及其对传统中医发展的影响。
首先,我们都知道:
-
中医博大精深,知识庞杂,需要多年学习和实践才能成为老中医。
-
大语言模型在提供足够数据集的情况下,能迅速训练出一个“医术高超”的中医。
接下来,分析这些信息对中医发展的影响:
-
技术与传统的结合:大语言模型作为一种先进技术,能够快速处理和分析大量数据,为中医提供新的研究和学习工具。然而,中医不仅仅依赖于理论知识,还涉及丰富的实践经验和直觉判断,这是单纯的数据分析难以替代的。
-
知识传承与创新:虽然大语言模型能快速学习中医知识,但中医的精髓往往蕴含在老一辈中医的经验和心得中,这些难以通过数据完全捕捉。因此,大模型可以作为辅助工具,帮助传承和创新中医知识,但不能完全替代传统的学习和实践方式。
-
个性化治疗与人文关怀:中医强调个性化治疗和人文关怀,这是大语言模型难以完全实现的。医生与患者的直接交流、对患者的全面了解和关怀,是中医治疗中不可或缺的一部分。
综上所述,大语言模型技术确实有可能在中医领域发挥重要作用,特别是在知识整理、数据挖掘和辅助诊断等方面。
要训练出一个医学细分领域的中医大模型,你可以遵循以下步骤,这些步骤结合了开源大语言模型的特性和中医领域的特点:
一、数据准备
-
数据收集:你已经提到有足够的中医数据,这是非常重要的第一步。确保数据涵盖中医经典文献、医学教科书、临床病历等多样化来源,以提高模型的泛化能力。
-
数据清洗:去除数据集中的噪声、不相关信息、敏感内容及重复条目,确保训练数据的纯净度和准确性。
-
数据标注:对于监督学习任务,需要对数据进行标注。例如,对于症状与诊断的对应关系、药物与疗效的关联等,都需要明确的标注。
-
数据格式转换:将清洗和标注后的数据转换为适合大语言模型训练的格式,如JSON等。
二、模型选择
-
开源大语言模型:选择一款开源的大语言模型作为基础,如BERT、GPT系列等。这些模型已经在大规模语料库上进行了预训练,具备强大的语言理解和生成能力。
-
模型评估:根据模型的性能、参数量、训练难度等因素,选择最适合你需求的模型。
三、模型训练
-
预训练:在中医领域的大规模语料库上对开源大语言模型进行预训练,使其能够捕获中医语言的基本特征。
-
监督微调:使用标注好的中医数据进行监督微调,使模型能够适应特定的中医任务,如症状诊断、药物推荐等。
-
参数优化:在微调过程中,通过调整学习率、批大小等参数,优化模型的训练效果。
四、模型评估与优化
-
性能评估:通过测试集评估模型的性能,如准确率、召回率、F1分数等指标。
-
错误分析:对模型的错误输出进行分析,找出模型在哪些方面存在不足,以便进行针对性优化。
-
迭代训练:根据评估结果和错误分析,对模型进行迭代训练,不断提高其性能。
五、模型应用与部署
-
API接口开发:为训练好的中医大模型开发API接口,方便其他应用调用。
-
系统集成:将中医大模型集成到现有的医疗信息系统中,实现智能化辅助诊疗、药物推荐等功能。
-
用户反馈收集:在实际应用中收集用户反馈,持续优化模型性能和应用体验。
六、注意事项
-
数据隐私与安全:在处理患者数据时,务必遵守相关法律法规,确保数据隐私与安全。
-
伦理审查:在将模型应用于临床决策之前,需要进行伦理审查,确保模型的输出不会对患者造成伤害。
-
持续学习与更新:中医领域的知识在不断更新和发展,因此需要对模型进行持续学习和更新,以保持其先进性和准确性。
通过以上步骤,你可以利用开源大语言模型训练出一个医学细分领域的中医大模型,为中医的传承与发展提供有力支持。
中医大模型开源!数据集开源!
源代码: 数据集
http://www.gitpp.com/tangray/huatuo-26m
中医博大精深,知识庞杂,一个医生需要经过多年的学习和实践才能成为老中医。而大语言模型出来后,如果提供足够的数据集,就能很快训练出一个医术高超的中医。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。