自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(21)
  • 收藏
  • 关注

翻译 Representation Learning on Networks-多层网络的节点嵌入

Representation Learning on Networks,对多层网络时的节点嵌入方法进行了介绍

2022-10-20 21:11:05 338

翻译 Representation Learning on Networks-Node embeddings

Representation Learning on Networks的node embedding部分

2022-10-20 20:39:55 286

翻译 斯坦福Representation Learning on Networks-intro

WWW-18 Tutorial :Representation Learning on Networks(Jure Leskovec)

2022-10-20 17:04:26 235

翻译 Watersheds for Semi-Supervised Classification

使用分水岭对图进行划分,得到半监督分类结果

2022-09-20 15:06:16 178

翻译 Triplet-Watershed for Hyperspectral Image Classification

在DCNN最后一层使用分水岭分类器来探索HSI数据的连通模式,得到更好的推理结果,所用的Triplet-Watershed在监督和半监督情况下均实现soat结果。

2022-09-14 20:36:16 132

原创 DataFrame保存分割任务测试指标

1.为指标创建有序字典from collections import OrderedDictseg_metrics = OrderedDict()2.为图像名及每个指标初始化为一个列表seg_metrics['Name']=list()seg_metrics['DSC']=list()seg_metrics['NSD'] = list()3.测试每张图像,同时记录其名字及分割指标model.eval()for idx, test_file in enumerate(os.listdir

2022-03-18 15:54:29 309

原创 基于形状先验的分割方法

1.Combining convolutional neural networks and star convex cuts for fast whole spine vertebra segmentation in mri2.Star-convex polyhedra for 3d object detection and segmentation in microscopy3.Deep convolutional neural networks with spatial regularizatio

2021-09-06 11:08:39 1393

原创 Texstudio图片位置

h:在源文本出现的大致位置t:该页顶端b: 该页地段p:放在一个特殊页上

2021-06-07 16:17:18 1884

翻译 Class-Wise Dynamic Graph Convolution for Semantic Segmentation

Class-Wise Dynamic Graph Convolution for Semantic Segmentation作者机构:北大,商汤,北邮来源:ECCV2020摘要:之前的工作可能会将潜在的误导上下文信息进行了聚合,提出CDGC(Class-Wise Dynamic Graph Convolution)模块可适应的传播信息。该模块中,同类像素间进行图推理。进一步利用该模块构建了CDGCNet,该网络包括一个基础分割网络和CDGC模块。基于基础分割网络的分割结果及得到的feature map

2021-05-08 16:14:51 562 2

翻译 CARAFE: Content-Aware ReAssembly of FEatures

CARAFE: Content-Aware ReAssembly of FEatures来源:ICCV2019作者机构:港中文,南洋理工摘要:特征上采样对于稠密预测十分重要,本文提出了依据内容感知进行特征重组的新方式CARAFE,具有感受野更大、可感知内容、轻量易计算的特点,易于集成到网络结构中。引言目前常用上采样由2种:最近邻插值、双线性插值。但最近邻和双线性插值只考虑亚像素邻域,无法捕获密集预测任务所需的丰富语义信息。反卷积也可用于上采样,但反卷积在整张图像上使用的是同一个卷积核,并未考虑

2021-05-08 10:56:00 2901

翻译 High-Order Attention Networks for Medical Image Segmentation

High-Order Attention Networks for Medical Image Segmentation作者机构:中国人民大学,西北工业大学,Visionary Intelligence Ltd,北京同仁医院,北京协和医院摘要:当前的CNN模型使用固定形状的感受野捕获局部上下文信息,特征解码器的权重具有位置不变性(对位置不敏感),这些限制了对于可变输入(形状、大小,域)的鲁棒性。为了捕获全局上下文信息,我们提出了高阶注意力模块(High-order Attention,HA)。该模块具

2021-05-07 16:39:43 832

翻译 DefGird

Beyond Fixed Grid: Learning Geometric Image Representation with a Deformable Grid来源:ECCV2020作者机构:University of Toronto, Vector Institute, NVIDIA, Peking University代码:def-grid摘要:图像通常被表示为固定的规则网格,使用CNN处理。本文认为对网格形变,将其与图像内容的高频部分对齐是一种更为有效的策略(使用2维的三角网格来表示图像)

2021-03-24 20:30:29 230

原创 如何使一个batch内加载不同大小的数据

解决:自定义dataloader内的collate_fn函数做法: batch内大小可变的输入import torchfrom torch.utils.data import DataLoaderfrom torchvision import transformsimport torchvision.datasets as datasetsimport matplotlib.pyplot as plt# a simple custom collate function, just to sh

2020-11-23 19:34:02 3897 3

原创 损失函数约束类间不一致性

损失函数约束类间不一致性及类内一致性参考书籍:Python深度学习-基于PyTorch交叉熵损失函数对不同类之间的距离的区分性较小。原因:softmax具备分类能力但是不具备度量学习的特征,没法压缩同一类别。因此,研究者们提出了几种损失函数。(1)三元组损失Triplet loss三元组损失属于度量学习,通过计算两张图象之间的相似度,使得输入图像被归入到相似度大的图像类别中去。Lt=∑[∥f(xia)−f(xip)∥22−∥f(xia)−f(xin)∥22+α]+L_t=\sum [\left \

2020-11-01 11:01:26 1301

翻译 PyGeometric创建自己的数据集

相关设置1.数据集的两个抽象类:torch_geometric.data.Dataset、 torch_geometric.data.InMemoryDataset。后者继承自前者,用于当整个数据集与内存匹配时。2.根文件夹被分为两个文件夹:raw_dir(数据集下载到的文件夹)、processed_dir(处理过的数据保存的文件夹)3.每个数据集被传入transform参数、pre_transform参数、pre_filter参数,这三个参数默认为None。transform函数:在访问数据对象

2020-10-09 14:26:40 1691 1

翻译 pygeomatric文档-introduction by examples

1.图的数据处理图被用于目标(节点)间的成对关系(边)的建模。py geomatric的一个图被描述为torch_geomatric.data.Data类的一个实例。该类具有以下默认属性:(1)data.x:节点特征矩阵(大小:节点数×\times× 节点特征维度;每行为一个节点的特征)(2)data.edge_index:节点的邻接矩阵,(COO格式的稀疏矩阵,矩阵类型为long,大小:2×\times×边数),边的数目是按无向图计算的,因此,是有向图边数的2倍。(3)data.edge_att

2020-10-09 10:20:15 464

原创 More Unlabelled Data or Label More Data? A Study on Semi-supervised Laparoscopic Image Segmentation

目录论文笔记:More Unlabelled Data or Label More Data? A Study on Semi-supervised Laparoscopic Image Segmentation摘要方法监督分割网络结构基于半监督的 mean teacher训练网络训练结果监督模型与mean teacher模型结果比较论文笔记:More Unlabelled Data or Label More Data? A Study on Semi-supervised Laparoscopic I

2020-09-30 09:22:33 320

原创 GPU加速深度学习

GPU加速深度学习背景:深度学习中的一些算法,如CNN、BP、Auto-Encoder等,都可以通过矩阵运算得到,但在单核CPU上执行时,矩阵运算会被展开为循环的形式串行执行,而GPU可将矩阵运算并行执行,大大缩短计算时间。Pytorch支持使用to(device)将数据从内存转移到GPU显存,还支持定位到多个GPU的一个或多个。PS:pytorch一般把GPU作用于tensor(FloatTensor或LongTensor等类型)或模型(包括torch.nn下面的一些网络模型及自己创建的模型)等数据

2020-09-11 18:38:23 1339

原创 pytorch保存模型

保存在测试集上最好的模型1.训练集的划分 full_dataset = Dataset(root=args.root_dir, dtype=dtype) train_size = int(0.8 * len(full_dataset)) # 训练集验证集比例=4:1 val_size = len(full_dataset) - train_size(1) torch.utils.data.random_split() # 按照给定的长度将数据集划分成没有重叠的新数

2020-09-11 08:59:14 1385

原创 帧间差分法进行运动目标检测

参考博客:帧间差分法、背景减法、光流场法简介前一帧Fn−1Fn-1Fn−1 ; 当前帧:Fn当前帧:Fn当前帧:Fn ; 后一帧:Fn+1Fn+1Fn+1输出图MM初始化为全0矩阵1.两帧差分法:适用场景:相邻帧间背景差异小,物体运动较慢两帧间的差异D=∣Fn−1−Fn∣D=|Fn-1-Fn|D=∣Fn−1−Fn∣阈值TM(find(D<T))=0M(find(D>=T))=2552.三帧差分法:适用场景:相邻帧间背景差异小,物体运动较

2020-09-10 21:15:44 1579

原创 英文写作公式

一.词:1.where2.and3.with4.here5.such that 满足…条件:6.denote二.公式的表述:1.xx can be expressed as equ2.we compute/encode xxx by equ3.the operation is defined as equ4.we compute xx using xx, given by equ5.this is given by equ6.we defined xx as equ7.xx is

2020-09-08 18:25:49 557

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除