Class-Wise Dynamic Graph Convolution for Semantic Segmentation

Class-Wise Dynamic Graph Convolution for Semantic Segmentation

作者机构:北大,商汤,北邮
来源:ECCV2020
摘要:之前的工作可能会将潜在的误导上下文信息进行了聚合,提出CDGC(Class-Wise Dynamic Graph Convolution)模块可适应的传播信息。该模块中,同类像素间进行图推理。进一步利用该模块构建了CDGCNet,该网络包括一个基础分割网络和CDGC模块。基于基础分割网络的分割结果及得到的feature map,对于预测结果的每一类像素,构造图卷积网络,使用图卷积得到每个像素refined的特征。
引言:
如何利用上下文信息?(1)更深的网络或空洞卷积,缺点:不灵活,不能针对内容可适应、对逐像素预测任务不友好(细节损失);(2)基于自注意力的方法,缺点:通过局部或非局部线索得到的上下文信息,对所有的区域加权卷积会导致学习有判别力得像素级特征较难、上下文信息应该是针对特定类别的,不同类的区域的特征间的学习是不恰当的。
CDGC网络的好处:(1)利用了长距离上下文依赖关系;(2)聚集了对像素标签预测的有用信息
自注意力方法实际上是构建了一个全连接图。我们对其进行改进,得到更好的性能。改进:(1)逐类构建图,每类的有用信息可以独立学习;(2)推理时只是用了部分上下文区域(对困难正样本、困难负样本、简单样本进行了动态采样)。
frameworkCDGC模块将M类的粗糙预测结果用作每类的mask,分别得到M类的像素特征。对每类像素特征,构建图卷积网络,得到refined得特征。M类的refined特征使用 1 ∗ 1 1*1 11卷积融合,融合后的refined特征与粗糙分割网络得到的特征拼接,用于再次得到精细分割结果。

CDGC模块

CDGC模块粗分割map结果共 N = H ∗ W N=H*W N=HW个像素,因此得到M个N维向量map。粗分割网络得feature map维 C ∗ H ∗ W C*H*W CHW,使用该特征,将每一类map中的像素作为节点,构建图网络,利用图卷积网络得到该类像素得refined特征。将得到的 M ∗ C ∗ N M*C*N MCN维特征reshape为 M ∗ C ∗ ( H ∗ W ) M*C*(H*W) MCHW,并使用1*1卷积将特征聚合为C通道。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值