Algorithm Aversion: Evidence from Ridesharing Drivers
算法厌恶:来自网约车司机的证据
Abstract
The low rate of adoption by human users often hinders AI algorithms from achieving their intended efficiency gains. This is particularly true for algorithms that prioritize system-wide objectives because they can create misalignment of incentives and cause confusion among potential users. We provide one of the first large-scale field studies on algorithm aversion by leveraging an algorithmic recommendation rollout on a large ridesharing platform. We identify contextual experience and herding as two important factors that explain ridesharing drivers’ aversion to an algorithm that is designed to help drivers make better location choices. Specifically, we find that drivers are less likely to follow the algorithm when the algorithmic recommendation does not align with their past experience at a given location-time unit and when their peers’ actions contradict the algorithmic recommendations. We discuss the managerial implications of these findings.
摘要
人类用户的低采纳率常常阻碍AI算法实现预期的效率提升。这一点尤其适用于优先考虑系统整体目标的算法,因为这些算法可能导致激励不一致,并引起潜在用户的困惑。我们利用大型网约车平台的算法推荐推广,提供了关于算法厌恶的大规模实地研究。我们确定了情境经验和从众行为是解释网约车司机对帮助他们做出更好位置选择的算法的厌恶的两个重要因素。具体来说,当算法推荐与司机在特定地点和时间单位的过往经验不一致,或当同侪行为与算法推荐相矛盾时,司机更不可能遵循算法推荐。我们讨论了这些发现的管理启示。
Funding
The research at Shanghai Jiaotong University was supported by the National Natural Science Foundation of China [Grants 72202135, 72110107001, 72231003]. S. Zhang acknowledges the support of Shanghai Pujiang Program [Grant 21PJC070], and Special Fund for Creative Research Groups [Grant 72221001]. Y. Zhu acknowledges the support of National University of Singapore [Grant WBS A-8000489-00-00].
资助信息
上海交通大学的研究得到了中国国家自然科学基金[资助号72202135, 72110107001, 72231003]的支持。S. Zhang感谢上海浦江计划[资助号21PJC070]和创新研究群体特别基金[资助号72221001]的支持。Y. Zhu感谢新加坡国立大学[资助号WBS A-8000489-00-00]的支持。
Supplemental Material
The online appendix and data are available at https://doi.org/10.1287/mnsc.2022.02475.
补充材料
在线附录和数据可在 https://doi.org/10.1287/mnsc.2022.02475 获得。