位姿测量 | 正交迭代(OI)算法的原理及其MATLAB实现

简介

本文介绍正交迭代算法的求解思路和MATLAB代码实现。正交迭代算法(orthogonal iteration algorithm),简称OI算法,用来求解相对位置和相对姿态参数。

注意,本文只介绍OI算法的求解流程以及相关MATLAB代码实现。
具体的推导思路见参考文献:C.P. Lu, G. Hager, E. Mjolsness. Fast and globally convergent pose estimation from video images[J]. IEEE Trans, Pattern Analysis and Machine Intelligence 2000, 22(5):610-622.

OI算法

公式推导

OI算法最重要的公式有几个,首先是误差函数:

E ( R , T ) = ∑ i = 1 m ∥ e L i ∥ 2 = ∑ i = 1 m ∑ j = 1 2 ∥ ( I − V i ) ( R P i j + T ) ∥ 2 E\left( {R,T} \right) = \sum\limits_{i = 1}^m { { {\left\| { { {\bf{e}}_L}_{_i}} \right\|}^2}} = \sum\limits_{i = 1}^m {\sum\limits_{j = 1}^2 { { {\left\| {\left( {I - {V_i}} \right)\left( {RP_i^j + T} \right)} \right\|}^2}} } E(R,T)=i=1meLi2=i=1mj=12 (IVi)(RPij+T) 2

其中 I I I表示单位矩阵, V i V_i Vi表示沿实现方向的投影矩阵, R R R表示旋转矩阵, P P P表示特征点在目标坐标系下的位置, Q Q Q表示特征点在相机坐标系下的位置。

其次是求解当前帧的最优位置参数 T T T
T ( k ) ( R ( k ) ) = 1 n ( I − 1 n ∑ i = 1 n V

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值