#include <stdio.h>
#include <string>
#include <string.h>
#include <queue>
#include <stack>
#include <map>
#include <iostream>
#include <stdlib.h>
#include <math.h>
#include <set>
#include <algorithm>
#define inf 0x3f3f3f3f
#define mem0(x , y) memset(x , y , sizeof(x))
#define ll long long
#define rep(x , y) for(int x=0;x<y;x++)
#define per(x , y) for(int x=y-1;x>=0;x--)
#define lowbit(x) (x & (-x))
#define read(x) scanf("%d",&x)
#define print(x) printf("%d\n" , x) ;
#define middle int mid = (l + r)/2
#define lson rt<<1 , l , mid
#define rson rt<<1|1 , mid+1, r
#define CASE int T ; int ca = 0 ; read(T) ; while(T--)
#define RT tree[rt]
#define FP freopen("1" , "r" , stdin)
#define mem0(x , y) memset(x , y , sizeof(x))
#define BIN(x) ll bin ; bin = (ll)1 << x ; ///2的x次方
#define E Edge[i]
const int MAXN = 500000 ;
const int MAXV = 200000 ;
const int MAXE = 200000 ;
const int mod = 1e8+7 ;
using namespace std ;
/****************前向星****************
struct edge{
int s , e , w , next ;
bool operator < (const edge & e) const{
return w < e.w ;
}
}Edge[MAXE] ;
int head[MAXV] , hct = 0 ;
void add_edge(int s,int e,int w){
Edge[hct].s = s ; Edge[hct].e =e ;Edge[hct].w = w ; Edge[hct].next = head[s] ;
head[s] = hct ++ ;
}
/*************************************/
优势是在于排序随便选....
int a[100000] ;
short dp[10005][10005] ;
short ans = 2 ;
int main(){
///FP ;
int n ; read(n) ;
rep(i , n) read(a[i]) ;
sort(a , a + n) ;
rep(i , n) rep(j , n) dp[i][j] = 2 ;
for(int i=0;i<n;i++){
int j=i-1;
int k=i+1;
while(j>=0 && k<n){
if(a[j] + a[k] > 2 * a[i]) j -- ;
else if(a[j] + a[k] < 2 * a[i]) k ++ ;
else{
dp[i][k] = dp[j][i] + 1 ;
ans = max(dp[i][k] , ans) ;
j -- ; k ++ ;
}
}
}
printf("%d\n" , ans) ;
}
对于 n = 10000 ; 只要是标准的0(n^2),那么应该是0.2ms , 也就树2s的时间限制可以过,但是不可以使用hash , 那就使用拓展法,因为是排序完毕的,那么可以保证,如果对于i存在j , k 满足
2 * a[i] = a[j] + a[k] ; 就可以使用DP拓展推广.这样可以避免使用hash (0(n^2lgn)) ;