这几天复习了莫比乌斯函数的运用,主要是用来解决倍数的问题的。现在就谈谈莫比乌斯函数的性质和反演定理的理解。
首先定义
u(x)
为莫比乌斯函数。他有以下性质:
1.
∑d|mu(x)=[m==1]
其中m == 1 指m == 1 的逻辑值,也就是如果m == 1 则表达式为1 , 否则表达式为0 .上面的公式是
u(x)
的定义,也就是他产生的原因。
2.
u(x)
是一个积性函数,也就是,
u(a∗b)=u(a)∗u(b)
; 这个可以证明的,但是没什么意思。
根据上面两个东西和素数基本定理可以知道以下求法:
1.
u(1)=1
2.
∑d|pku(pk)=0
. 这样推下去,
u(p)=−1且u(pd)(d>1)=0
。
3.根据积性和算术基本定理可知,任何一个数都是素数的乘积表示,这样的话有:
u(1)=1,u(p1p2p3...pr)=(−1)r,u(x)=0(∃p2x|x)
以上性质是有算术定理递推来的,所以可以使用晒法求出
O(nlgn)求出来
。
反演定理:
g(x)=∑d|xf(d)⇒f(x)=∑d|xu(xd)∗g(d)
也就是把顺序翻一下,,但是多乘一个u(x) ; 证明:
∑d|xu(xd)∗g(d)=>
∑d|xu(xd)∗∑m|df(d)=>
令l=x/d,且d=am;l=xam
那么
l|xm
∑m|xf(m)∑l|xmu(l)
由于
∑d|mu(x)=[m==1]
所以上面只有当x / m == 1时才是1,其他时候为0,那么当x = m 时,原式等于
f(m)
。得证。
利用反演,可以找到倍数关系和所求数的关系,常用语gcd等题目中。以后再把例题更新上来。同时,这里总结几个求和的要点。
对于多重
∑
,要么通过贡献的思想得到直观的答案,但是也可以通过交换求和顺序得到数学上的推导答案。一下两点是求和性质:
1.
∑df(d)∑x和d的关系式g(x)=∑d∑x和d的关系式g(x)f(d)
。 这个很正常的,表示的意义和上面一样,但是唯一不同是合并了,运用和提取公因式的方法。乘法分配律。显然。
2.就是把1中第一个式子的顺序变化。颠倒先后顺序。写成
∑g(x)∑f(d)
的关系,只需要把后面的量提前面就可以,一般是
∑f(d)
具有求和关系,等于一个式子或者是常量的时候,对于
u(x)
肯定是把它放后面,反正原则就是把可以求出来的放到等式的最后面,因为最后面的等式是变量最少的,但是变量的限制最多的等式,由于变量少,所以可以求出来。
例题:1.hdu5656 CA Loves GCD最水的一题,就是简单的应用,可以把结果得到和N这一维无关。