神经网络图像分类---手写数字识别

前言

本文介绍手写数字图像的分类。使用学习到的参数,先实现神经网络的“推理处理”。这个推理处理也称为神经网络的前向传播(forward propagation)

和求解机器学习问题的步骤(分成学习和推理两个阶段进行)一样,使用神经网络解决问题时:

  • 需要先使用训练数据(学习数据)进行权重参数的学习
  • 进行推理时,使用刚才学习到的参数,对输入数据进行分类。

一、MNIST数据集

数据集构成

MNIST数据集是由0到9的数字图像构成的(如下图所示)。训练图像有6万张,测试图像有1万张,这些图像可以用于学习和推理。MNIST数据集的一般使用方法是,先用训练图像进行学习,再用学习到的模型度量能在多大程度上对测试图像进行正确的分类。

在这里插入图片描述

MNIST的图像数据是28像素×28像素的灰度图像(1通道),各个像素的取值在0到255之间。每个图像数据都相应地标有“7”“2”“1”等标签。

数据读取和处理

使用mnist.py(在文末)中的load_mnist()函数,就可以按下述方式轻松读入MNIST数据。(注意:运行的时候不要打开梯子,不然会报错

import sys, os
sys.path.append(os.pardir) # 为了导入父目录中的文件而进行的设定
from dataset.mnist import load_mnist

# 第一次调用会花费几分钟……
(x_train, t_train), (x_test, t_test) = load_mnist(flatten=True, normalize=False)

# 输出各个数据的形状
print(x_train.shape) # (60000, 784)
print(t_train.shape) # (60000,)
print(x_test.shape)  # (10000, 784)
print(t_test.shape)  # (10000,)

代码说明:

  • 为了导入父目录中的文件,进行相应的设定。
  • 导入dataset/mnist.py中的load_mnist函数。
  • 使用load_mnist函数,读入MNIST数据集。第一次调用load_mnist函数时,因为要下载MNIST数据集,所以需要接入网络。第2次及以后的调用只需读入保存在本地的文件(pickle文件)即可,因此处理所需的时间非常短。

load_mnist函数以“(训练图像, 训练标签),(测试图像, 测试标签)”的形式返回读入的MNIST数据。此外,还可以通过设置三个参数来调整数据的读取方式,如下所示:

load_mnist(normalize=True, flatten=True, one_hot_label=False)

参数说明:

  1. normalize:
    • 设置是否将输入图像正规化为0.0~1.0的值。
    • 如果将该参数设置为False,则输入图像的像素值保持原来的0~255。
  2. flatten:
    • 设置是否展开输入图像(变成一维数组)。
    • 如果将该参数设置为False,则输入图像为1×28×28的三维数组。
    • 若设置为True,则输入图像会保存为由784个元素构成的一维数组。
  3. one_hot_label:
    • 设置是否将标签保存为one-hot表示(one-hot representation)。
    • one-hot表示是仅正确解标签为1,其余皆为0的数组,就像[0,0,1,0,0,0,0,0,0,0]这样。
    • 当one_hot_label为False时,只是简单地保存正确解标签,如7或2;
    • 当one_hot_label为True时,标签则保存为one-hot表示。

Python的pickle功能:

Python有pickle这个便利的功能,可以将程序运行中的对象保存为文件。如果加载保存过的pickle文件,可以立刻复原之前程序运行中的对象。用于读入MNIST数据集的load_mnist()函数内部也使用了pickle功能(在第2次及以后读入时)。利用pickle功能,可以高效地完成MNIST数据的准备工作。

显示MNIST图像

现在试着显示MNIST图像,同时也确认一下数据。图像的显示使用PIL(Python Image Library)模块。执行下述代码后,训练图像的第一张就会显示出来。

import sys, os
sys.path.append(os.pardir)
import numpy as np
from dataset.mnist import load_mnist
from PIL import Image

def img_show(img):
    pil_img = Image.fromarray(np.uint8(img))
    pil_img.show()

(x_train, t_train), (x_test, t_test) = load_mnist(flatten=True, normalize=False)
img = x_train[0]
label = t_train[0]
print(label) # 5
print(img.shape)          # (784,)
img = img.reshape(28, 28) # 把图像的形状变成原来的尺寸
print(img.shape)          # (28, 28)
img_show(img)

显示的图片如下:

在这里插入图片描述

注意事项:

  • flatten=True时读入的图像是以一列(一维)NumPy数组的形式保存的。因此,显示图像时,需要把它变为原来的28像素×28像素的形状。
  • 可以通过reshape()方法的参数指定期望的形状,更改NumPy数组的形状。
  • 还需要把保存为NumPy数组的图像数据转换为PIL用的数据对象,这个转换处理由Image.fromarray()来完成。

二、神经网络的推理处理

下面对这个MNIST数据集实现神经网络的推理处理。神经网络的输入层有784个神经元,输出层有10个神经元。

  • 输入层的784这个数字来源于图像大小的28×28=784
  • 输出层的10这个数字来源于10类别分类(数字0到9,共10类别)

此外,这个神经网络有2个隐藏层,第1个隐藏层有50个神经元,第2个隐藏层有100个神经元。这个50和100可以设置为任何值。

定义相关函数

下面先定义get_data()init_network()predict()这3个函数

def get_data():
    (x_train, t_train), (x_test, t_test) = \
        load_mnist(normalize=True, flatten=True, one_hot_label=False)
    return x_test, t_test

def init_network():
    with open("sample_weight.pkl", 'rb') as f:
        network = pickle.load(f)
    return network

def predict(network, x):
    W1, W2, W3 = network['W1'], network['W2'], network['W3']
    b1, b2, b3 = network['b1'], network['b2'], network['b3']
    a1 = np.dot(x, W1) + b1
    z1 = sigmoid(a1)
    a2 = np.dot(z1, W2) + b2
    z2 = sigmoid(a2)
    a3 = np.dot(z2, W3) + b3
    y = softmax(a3)
    return y

init_network()会读入保存在pickle文件sample_weight.pkl中的学习到的权重参数。这个文件中以字典变量的形式保存了权重和偏置参数。剩余的2个函数,和前面介绍的代码实现基本相同。

神经网络推理处理及评估精度

下面用这3个函数来实现神经网络的推理处理,然后评价它的识别精度(accuracy),即能在多大程度上正确分类。

x, t = get_data()
network = init_network()
accuracy_cnt = 0

for i in range(len(x)):
    y = predict(network, x[i])
    p = np.argmax(y)  # 获取概率最高的元素的索引
    if p == t[i]:
        accuracy_cnt += 1

print("Accuracy:" + str(float(accuracy_cnt) / len(x)))
  1. 获得MNIST数据集并生成网络
  2. 逐一取出图像数据并进行分类:for语句逐一取出保存在x中的图像数据,并用predict()函数进行分类。
  3. 输出标签对应的概率:predict()函数以NumPy数组的形式输出各个标签对应的概率。例如,输出[0.1, 0.3, 0.2, …, 0.04]的数组,该数组表示“0”的概率为0.1,“1”的概率为0.3,等等。
  4. 取出概率列表中的最大值索引(即概率最高的元素的索引)作为预测结果
  5. 使用np.argmax(x)函数取出数组中的最大值的索引
  6. 1比较预测结果与正确解标签并计算识别精度:比较神经网络所预测的答案和正确解标签,将回答正确的次数计算出来以得到识别精度。

注意事项:

  1. **加载已学习的参数:**因为之前假设学习已经完成,所以学习到的参数被保存下来。假设保存在sample_weight.pkl文件中。在推理阶段,直接加载这些已经学习到的参数。
  2. **显示分类精度:**执行上面的代码后,会显示Accuracy: 0.9352。这表示有93.52%的数据被正确分类了。目前的目标是运行学习到的神经网络,所以不讨论识别精度本身。
  3. 正规化处理:在这个例子中,我们把load_mnist函数的参数normalize设置成了True。将normalize设置成True后,函数内部会进行转换,将图像的各个像素值除以255,使得数据的值在0.0~1.0的范围内。像这样把数据限定到某个范围内的处理称为正规化(normalization)。
  4. 预处理的重要性:对神经网络的输入数据进行某种既定的转换称为预处理(pre-processing)。这里,作为对输入图像的一种预处理,我们进行了正规化。
  5. 预处理的具体方法:在刚才的例子中,作为一种预处理,我们将各个像素值除以255,进行了简单的正规化。实际上,很多预处理都会考虑到数据的整体分布。比如,利用数据整体的均值或标准差,移动数据,使数据整体以0为中心分布,或者进行正规化,把数据的延展控制在一定范围内。除此之外,还有将数据整体的分布形状均匀化的方法,即数据白化(whitening)等。

三、批处理

在之前实现的处理MNIST数据集的神经网络基础上,我们将重点关注输入数据和权重参数的“形状”。通过以下步骤,可以使用Python解释器输出神经网络各层权重的形状:

# 用Python解释器输出各层权重的形状
x, _ = get_data()
network = init_network()
W1, W2, W3 = network['W1'], network['W2'], network['W3']

print(x.shape)       # (10000, 784)
print(x[0].shape)    # (784,)
print(W1.shape)      # (784, 50)
print(W2.shape)      # (50, 100)
print(W3.shape)      # (100, 10)

通过上述结果,我们可以确认多维数组的对应维度的元素个数是否一致(偏置被省略)。如图所示

  • 输入层权重 W 1 W 1 W1 的形状是 (784, 50)
  • 第一隐藏层权重 W 2 W 2 W2 的形状是 (50, 100)
  • 第二隐藏层权重 W 3 W 3 W3 的形状是 (100, 10)

在这里插入图片描述

从整体处理流程来看,输入一个由784个元素(原本是一个28×28的二维数组)构成的一维数组后,输出一个有10个元素的一维数组。这是处理一张图像数据时的流程。

现在考虑打包输入多张图像的情形。比如,我们想用predict()函数一次性打包处理100张图像。为此,可以把x的形状改为100×784,将100张图像打包作为输入数据。如图所示:

  • 输入数据的形状为 (100, 784)
  • 输出数据的形状为 (100, 10)

在这里插入图片描述

这表示输入的100张图像的结果被一次性输出。比如,x[0]y[0]中保存了第0张图像及其推理结果,x[1]y[1]中保存了第1张图像及其推理结果,等等。

这种打包式的输入数据称为批(batch)。批有“捆”的意思,图像就如同纸币一样扎成一捆。

批处理的优势

批处理对计算机运算大有利处,可以大幅缩短每张图像的处理时间。批处理能够提高处理速度的原因包括:

  1. 数值计算库的优化: 大多数处理数值计算的库都进行了能够高效处理大型数组运算的最优化。
  2. 减轻数据总线负荷: 在神经网络运算中,当数据传送成为瓶颈时,批处理可以减轻数据总线的负荷。批处理一次性计算大型数组要比分开逐步计算各个小型数组速度更快。

批处理实现

下面我们进行基于批处理的代码实现。

x, t = get_data()
network = init_network()
batch_size = 100  # 批数量
accuracy_cnt = 0

for i in range(0, len(x), batch_size):
    x_batch = x[i:i+batch_size]
    y_batch = predict(network, x_batch)
    p = np.argmax(y_batch, axis=1)
    accuracy_cnt += np.sum(p == t[i:i+batch_size])

print("Accuracy:" + str(float(accuracy_cnt) / len(x)))

代码解释:

  1. range()函数: range()函数若指定为range(start, end),则会生成一个由startend-1之间的整数构成的列表。若像range(start, end, step)这样指定3个整数,则生成的列表中的下一个元素会增加step指定的值。我们来看一个例子:

    >>> list(range(0, 10))
    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
    
    >>> list(range(0, 10, 3))
    [0, 3, 6, 9]
    
  2. 批数据抽取: 在range()函数生成的列表的基础上,通过x[i:i+batch_size]从输入数据中抽出批数据。x[i:i+batch_size]会取出从第i个到第i+batch_size个之间的数据。本例中是像x[0:100]x[100:200]……这样,从头开始以100为单位将数据提取为批数据。

  3. argmax()函数: 通过argmax()获取值(即每一行)最大元素的索引。这里需要注意的是,我们给定了参数axis=1。这指定了在100×10的数组中,沿着第1维方向(以第1维为轴)找到值最大的元素的索引(第0维对应第1个维度)。这里来看一个例子:

    >>> x = np.array([[0.1, 0.8, 0.1], [0.3, 0.1, 0.6],
    ...               [0.2, 0.5, 0.3], [0.8, 0.1, 0.1]])
    >>> y = np.argmax(x, axis=1)
    >>> print(y)
    [1 2 1 0]
    
  4. 比较分类结果: 最后比较一下以批为单位进行分类的结果和实际的答案。为此,需要在NumPy数组之间使用比较运算符(==)生成由True/False构成的布尔型数组,并计算True的个数。我们通过下面的例子进行确认:

    >>> y = np.array([1, 2, 1, 0])
    >>> t = np.array([1, 2, 0, 0])
    >>> print(y == t)
    [True True False True]
    >>> np.sum(y == t)
    3
    

四、mnist.py源码

# coding: utf-8
import os
import gzip
import pickle
import requests
import numpy as np

url_base = 'https://storage.googleapis.com/cvdf-datasets/mnist/'
key_file = {
    'train_img': 'train-images-idx3-ubyte.gz',
    'train_label': 'train-labels-idx1-ubyte.gz',
    'test_img': 't10k-images-idx3-ubyte.gz',
    'test_label': 't10k-labels-idx1-ubyte.gz'
}

dataset_dir = os.path.dirname(os.path.abspath(__file__))
save_file = os.path.join(dataset_dir, "mnist.pkl")

train_num = 60000
test_num = 10000
img_dim = (1, 28, 28)
img_size = 784


def _download(file_name):
    file_path = os.path.join(dataset_dir, file_name)

    if os.path.exists(file_path):
        return

    print("Downloading " + file_name + " ... ")
    response = requests.get(url_base + file_name, stream=True)
    if response.status_code == 200:
        with open(file_path, 'wb') as f:
            f.write(response.content)
        print("Done")
    else:
        print("Failed to download " + file_name)


def download_mnist():
    for v in key_file.values():
        _download(v)


def _load_label(file_name):
    file_path = os.path.join(dataset_dir, file_name)

    print("Converting " + file_name + " to NumPy Array ...")
    with gzip.open(file_path, 'rb') as f:
        labels = np.frombuffer(f.read(), np.uint8, offset=8)
    print("Done")

    return labels


def _load_img(file_name):
    file_path = os.path.join(dataset_dir, file_name)

    print("Converting " + file_name + " to NumPy Array ...")
    with gzip.open(file_path, 'rb') as f:
        data = np.frombuffer(f.read(), np.uint8, offset=16)
    data = data.reshape(-1, img_size)
    print("Done")

    return data


def _convert_numpy():
    dataset = {}
    dataset['train_img'] = _load_img(key_file['train_img'])
    dataset['train_label'] = _load_label(key_file['train_label'])
    dataset['test_img'] = _load_img(key_file['test_img'])
    dataset['test_label'] = _load_label(key_file['test_label'])

    return dataset


def init_mnist():
    download_mnist()
    dataset = _convert_numpy()
    print("Creating pickle file ...")
    with open(save_file, 'wb') as f:
        pickle.dump(dataset, f, -1)
    print("Done!")


def _change_one_hot_label(X):
    T = np.zeros((X.size, 10))
    for idx, row in enumerate(T):
        row[X[idx]] = 1
    return T


def load_mnist(normalize=True, flatten=True, one_hot_label=False):
    """读入MNIST数据集

        Parameters
        ----------
        normalize : 将图像的像素值正规化为0.0~1.0
        one_hot_label :
            one_hot_label为True的情况下,标签作为one-hot数组返回
            one-hot数组是指[0,0,1,0,0,0,0,0,0,0]这样的数组
        flatten : 是否将图像展开为一维数组

        Returns
        -------
        (训练图像, 训练标签), (测试图像, 测试标签)
    """
    if not os.path.exists(save_file):
        init_mnist()

    with open(save_file, 'rb') as f:
        dataset = pickle.load(f)

    if normalize:
        for key in ('train_img', 'test_img'):
            dataset[key] = dataset[key].astype(np.float32)
            dataset[key] /= 255.0

    if one_hot_label:
        dataset['train_label'] = _change_one_hot_label(dataset['train_label'])
        dataset['test_label'] = _change_one_hot_label(dataset['test_label'])

    if not flatten:
        for key in ('train_img', 'test_img'):
            dataset[key] = dataset[key].reshape(-1, 1, 28, 28)

    return (dataset['train_img'], dataset['train_label']), (
        dataset['test_img'], dataset['test_label'])


if __name__ == '__main__':
    init_mnist()

在这里插入图片描述

  • 32
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
卷积神经网络(Convolutional Neural Networks,简称CNN)是一种在图像处理中非常重要的神经网络结构。它可以用于手写体数字识别等任务。下面是一个使用CNN进行手写体数字识别的示例: ```python import tensorflow as tf from tensorflow.keras.datasets import mnist # 加载MNIST数据集 (x_train, y_train), (x_test, y_test) = mnist.load_data() # 数据预处理 x_train = x_train.reshape(-1, 28, 28, 1) / 255.0 x_test = x_test.reshape(-1, 28, 28, 1) / 255.0 y_train = tf.keras.utils.to_categorical(y_train, num_classes=10) y_test = tf.keras.utils.to_categorical(y_test, num_classes=10) # 构建卷积神经网络模型 model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)), tf.keras.layers.MaxPooling2D((2, 2)), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(10, activation='softmax') ]) # 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(x_train, y_train, epochs=5, batch_size=32, validation_data=(x_test, y_test)) # 评估模型 test_loss, test_acc = model.evaluate(x_test, y_test) print('Test accuracy:', test_acc) ``` 这个示例使用了TensorFlow和Keras库来构建和训练一个卷积神经网络模型,用于手写体数字识别任务。模型首先加载了MNIST数据集,并进行了数据预处理。然后,通过添加卷积层、池化层、全连接层和输出层来构建了一个简单的卷积神经网络模型。最后,使用训练集对模型进行训练,并使用测试集评估模型的准确性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Peter-Lu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值