手写数字识别DNN

基于minst数据集的手写数字识别系统的DNN实现。

import numpy as np
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.layers import Conv2D, MaxPooling2D, Flatten
from keras.optimizers import SGD, Adam
from keras.utils import np_utils
from keras.datasets import mnist


def load_data():
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    number = 10000
    x_train = x_train[0: number] 
    y_train = y_train[0: number]

    x_train = x_train.reshape(number, 28 * 28)
    x_test = x_test.reshape(x_test.shape[0], 28 * 28)
    x_train = x_train.astype('float32')
    x_test = x_test.astype('float32')

    y_train = np_utils.to_categorical(y_train, 10)
    y_test = np_utils.to_categorical(y_test, 10)

    x_train = x_train
    x_test = x_test
    x_train = x_train / 255
    x_test = x_test / 255
    return (x_train, y_train), (x_test, y_test)


(x_train, y_train), (x_test, y_test) = load_data()
# print(x_train.shape)
# print(x_train[0])
# print(y_train.shape)
# print(y_train[0])
model = Sequential()
model.add(Dense(input_dim=28 * 28, units=689, activation='relu'))
model.add(Dense(units=689, activation='relu'))
model.add(Dense(units=10, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

model.fit(x_train, y_train, batch_size=100, epochs=20)

result = model.evaluate(x_train, y_train)
print('Train Acc:', result[1])

result = model.evaluate(x_test, y_test)
print('Test Acc:', result[1])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值