基于minst数据集的手写数字识别系统的DNN实现。
import numpy as np
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.layers import Conv2D, MaxPooling2D, Flatten
from keras.optimizers import SGD, Adam
from keras.utils import np_utils
from keras.datasets import mnist
def load_data():
(x_train, y_train), (x_test, y_test) = mnist.load_data()
number = 10000
x_train = x_train[0: number]
y_train = y_train[0: number]
x_train = x_train.reshape(number, 28 * 28)
x_test = x_test.reshape(x_test.shape[0], 28 * 28)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
y_train = np_utils.to_categorical(y_train, 10)
y_test = np_utils.to_categorical(y_test, 10)
x_train = x_train
x_test = x_test
x_train = x_train / 255
x_test = x_test / 255
return (x_train, y_train), (x_test, y_test)
(x_train, y_train), (x_test, y_test) = load_data()
# print(x_train.shape)
# print(x_train[0])
# print(y_train.shape)
# print(y_train[0])
model = Sequential()
model.add(Dense(input_dim=28 * 28, units=689, activation='relu'))
model.add(Dense(units=689, activation='relu'))
model.add(Dense(units=10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=100, epochs=20)
result = model.evaluate(x_train, y_train)
print('Train Acc:', result[1])
result = model.evaluate(x_test, y_test)
print('Test Acc:', result[1])