Problem Description
虽然草儿是个路痴(就是在杭电待了一年多,居然还会在校园里迷路的人,汗~),但是草儿仍然很喜欢旅行,因为在旅途中 会遇见很多人(白马王子,^0^),很多事,还能丰富自己的阅历,还可以看美丽的风景……草儿想去很多地方,她想要去东京铁塔看夜景,去威尼斯看电影,去阳明山上看海芋,去纽约纯粹看雪景,去巴黎喝咖啡写信,去北京探望孟姜女……眼看寒假就快到了,这么一大段时间,可不能浪费啊,一定要给自己好好的放个假,可是也不能荒废了训练啊,所以草儿决定在要在最短的时间去一个自己想去的地方!因为草儿的家在一个小镇上,没有火车经过,所以她只能去邻近的城市坐火车(好可怜啊~)。
Input
输入数据有多组,每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个,草儿想去的地方有D个;
接着有T行,每行有三个整数a,b,time,表示a,b城市之间的车程是time小时;(1=<(a,b)<=1000;a,b 之间可能有多条路)
接着的第T+1行有S个数,表示和草儿家相连的城市;
接着的第T+2行有D个数,表示草儿想去地方。
Output
输出草儿能去某个喜欢的城市的最短时间。
Sample Input
6 2 3
1 3 5
1 4 7
2 8 12
3 8 4
4 9 12
9 10 2
1 2
8 9 10
Sample Output
9
解题思路:给多个起点,问从某个城市出发,能到达最近的想去的城市所需要的时间。
方法:最短路。Dijkstra。这里有一个简化吧。假设一个点,这个点到达所有起点城市的距离都为0。这样就可以看成是一个点到其他点的时间了。
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define INF 100000
int t,s,d,dis[1001][1001], q[1024];
int main()
{
int a ,b, time,i, j, k, min, x, len, S, D, z;
while(scanf("%d%d%d",&t,&s,&d)!=EOF)
{
for(i = 0;i<1001;i++)
{
for(j = 0;j<1001;j++)
{
dis[i][j] = INF;
}
}
len = 0;
for(i = 1;i<=t;i++)
{
scanf("%d%d%d",&a, &b, &time);
if(dis[a][b]>time)
{
dis[a][b] = dis[b][a] = time;
}
if(len < a)
{
len = a;
}
if(len < b)
{
len = b;
}
}
for(i = 1;i<=s;i++)
{
scanf("%d",&S);
dis[0][S] = 0;//假定一个起点,这个点到每个城市的距离都为0,这样就可以用一次dijkstra来求了
}
memset(q,0,sizeof(q));
for(j = 1;j<=len;j++)
{
min = INF;
for(k = 1;k<=len;k++)
{
if(!q[k]&&dis[0][k]<min)
{
min = dis[0][k];
x = k;
}
}
q[x] = 1;
for(k = 1;k<=len;k++)
{
if (!q[k] && dis[0][k] > dis[0][x] + dis[x][k])
{
dis[0][k] = dis[0][x] + dis[x][k];
}
}
}
min = INF;
for( i = 1;i<=d;i++)
{
scanf("%d",&D);
if(min > dis[0][D])
{
min = dis[0][D];
}
}
printf("%d\n",min);
}
system("pause");
return 0;
}