标题题1:纪念品分组 (group.pas/c/cpp)
# 【题目描述】
元旦快到了,校学生会让乐乐负责新年晚会的纪念品发放工作。为使得参加晚会的同学所获得的纪念品价值相对均衡,他要把购来的纪念品根据价格进行分组,但每组最多只能包括两件纪念品, 并且每组纪念品的价格之和不能超过一个给定的整数。为了保证在尽量短的时间内发完所有纪念品,乐乐希望分组的数目最少。
你的任务是写一个程序,找出所有分组方案中分组数最少的一种,输出最少的分组数目。
# 【输入文件】
输入文件 g r o u p . i n group.in group.in,含 n + 2 n+2 n+2行:
第1行包括一个整数 w w w,为每组纪念品价格之和的上限;
第2行为一个整数 n n n,表示购来的纪念品的总件数;
第 3 − n + 2 3-n+2 3−n+2行每行包含一个正整数 P i ( 5 ≤ P i ≤ w ) Pi(5 \le Pi \le w) Pi(5≤Pi≤w),表示所对应纪念品的价格。
# 【输出文件】
输出文件 g r o u p . o u t group.out group.out,仅一行,包含一个整数,即最少的分组数目。
# 【输入样例1】
100
9
90
20
20
30
50
60
70
80
90
# 【输出样例1】
6
# 【限制】
50 % 50\% 50%的数据满足: 1 ≤ n ≤ 15 1 \le n \le 15 1≤n≤15;
100 % 100\% 100%的数据满足: 1 ≤ n ≤ 30000 , 80 ≤ W ≤ 200 1 \le n \le 30000,80 \le W \le 200 1≤n≤30000,80≤W≤200。
【代码如下】:
#include <bits/stdc++.h>
using namespace std;
int n,g;
int present[30050];
int main() {
cin>>n>>g;
for(int i=1; i<=g; i++) {
cin>>present[i];
}
sort(present+1,present+g+1);
int ma,mi;
ma=g;
mi=1;
int sum=0;
while(1) {
if(mi>ma) break;
if(present[ma]+present[mi]>n) {
ma--;
sum++;
} else {
ma--;
mi++;
sum++;
}
}
cout<<sum<<endl;
return 0;
}