题3:细胞分裂
( c e l l . p a s / c / c p p ) (cell.pas/c/cpp) (cell.pas/c/cpp)
【问题描述】
H a n k s Hanks Hanks 博士是 B T BT BT ( B i o − T e c h Bio-Tech Bio−Tech,生物技术) 领域的知名专家。现在,他正在为一个细胞实验做准备工作:培养细胞样本。
H a n k s Hanks Hanks 博士手里现在有 N N N 种细胞,编号从 1 N 1~N 1 N,一个第i 种细胞经过 1 1 1 秒钟可以分裂为 S i S_i Si 个同种细胞( S i S_i Si 为正整数)。现在他需要选取某种细胞的一个放进培养皿,让其自由分裂,进行培养。一段时间以后,再把培养皿中的所有细胞平均分入 M M M 个试管,形成 M M M 份样本,用于实验。 H a n k s Hanks Hanks 博士的试管数 M M M 很大,普通的计算机的基本数据类型无法存储这样大的 M M M 值,但万幸的是, M M M 总可以表示为 m 1 m_1 m1 的 m 2 m_2 m2 次方,即 M = m 1 m 2 M = m_1^{m_2} M=m1m2 ,其中 m 1 , m 2 m_1,m_2 m1,m2 均为基本数据类型可以存储的正整数。
注意,整个实验过程中不允许分割单个细胞,比如某个时刻若培养皿中有 4 4 4 个细胞, H a n k s Hanks Hanks 博士可以把它们分入 2 2 2 个试管,每试管内 2 2 2 个,然后开始实验。但如果培养皿中有 5 5 5个细胞,博士就无法将它们均分入 2 2 2 个试管。此时,博士就只能等待一段时间,让细胞们继续分裂,使得其个数可以均分,或是干脆改换另一种细胞培养。
为了能让实验尽早开始, H a n k s Hanks Hanks 博士在选定一种细胞开始培养后,总是在得到的细胞“刚好可以平均分入 M M M 个试管”时停止细胞培养并开始实验。现在博士希望知道,选择哪种细胞培养,可以使得实验的开始时间最早。
【输入】
输入文件名为 c e l l . i n cell.in cell.in,共有三行。
第一行有一个正整数 N N N,代表细胞种数。
第二行有两个正整数 m 1 , m 2 m1,m2 m1,m2,以一个空格隔开, m 1 m 2 m_1^ {m_2} m1m2 即表示试管的总数 M M M。
第三行有 N N N 个正整数,第 i i i 个数 S i S_i Si 表示第i 种细胞经过 1 1 1 秒钟可以分裂成同种细胞的个数。
【输出】
输出文件
c
e
l
l
.
o
u
t
cell.out
cell.out 共一行,为一个整数,表示从开始培养细胞到实验能够开始所经过的
最少时间(单位为秒)。
如果无论 H a n k s Hanks Hanks 博士选择哪种细胞都不能满足要求,则输出整数 − 1 -1 −1。
【输入样例 1】 cell.in
1
2 1
3
[输出样例1] cell.out
-1
【输入输出样例1 说明】
经过
1
1
1 秒钟,细胞分裂成
3
3
3 个,经过
2
2
2 秒钟,细胞分裂成
9
9
9 个,……,可以看出无论怎么分
裂,细胞的个数都是奇数,因此永远不能分入
2
2
2 个试管。
【输入样例 2】cell.in
2
24 1
30 12
[输出样例2] cell.out
2
【输入输出样例2 说明】
第
1
1
1 种细胞最早在
3
3
3 秒后才能均分入
24
24
24 个试管,而第
2
2
2 种最早在
2
2
2 秒后就可以均分(每
试管
144
/
(
241
)
=
6
144/(241)=6
144/(241)=6 个)。故实验最早可以在
2
2
2 秒后开始。
【数据范围】
对于 50 % 50\% 50%的数据,有 m 1 m 2 ≤ 30000 m_1^ {m_2} ≤ 30000 m1m2≤30000。
对于所有的数据,有 1 ≤ N ≤ 10000 , 1 ≤ m 1 ≤ 30000 , 1 ≤ m 2 ≤ 10000 , 1 ≤ S i ≤ 2 , 000 , 000 , 000 1 \le N \le 10000,1 \le m_1 \le 30000,1 \le m_2 \le 10000,1 \le S_i \le 2,000,000,000 1≤N≤10000,1≤m1≤30000,1≤m2≤10000,1≤Si≤2,000,000,000。
【代码如下】:
#include<bits/stdc++.h>
using namespace std;
const int maxn=30000+10;
int n,i,j,m1,m2,minn=2147483647;
int prime[maxn]={0}; //30000以内所有的质数
bool flag=false,here; //flag为所有细胞,here为单个细胞的判断
int pipe_prime[maxn]; //试管的质因数分解
int cell_prime[maxn]; //细胞的质因数分解
int sum_prime=0,cell,now; //30000以内质数总数记为sum_prime
bool pr(int k) //判断是否为素数,不予以注释
{
int m;
for(m=2;m<=floor(sqrt(k));m++)
if(k%m==0)return false;
return true;
}
int main() //主程序开始
{
cin>>n; cin>>m1>>m2;
for(i=2;i<=maxn;i++) //把30000以内的质因数枚举出来
if(pr(i))
{
sum_prime++;
prime[sum_prime]=i;
}
i=1; while(m1!=1) //为m1质因数分解
{
if(m1%prime[i]==0)
while(m1%prime[i]==0) //除到没有为止
{pipe_prime[i]+=m2; m1/=prime[i]; }
i++;
}
for(i=1;i<=n;i++)
{
cin>>cell; j=1; now=0; here=true; //初始化
memset(cell_prime,0,sizeof(cell_prime)); //初始化,加头文件cstring
while(j<=sum_prime) //大于30000的质因子忽略,即在30000内质因数分解
{
if(cell%prime[j]==0)
while(cell%prime[j]==0)
{cell_prime[j]++; cell/=prime[j]; }
j++;
}
for(j=1;j<=sum_prime;j++)
{
if(pipe_prime[j]!=0&&cell_prime[j]==0)here=false; //如果细胞没有试管所拥有的质因子,该细胞不可用
if(pipe_prime[j]!=0&&cell_prime[j]!=0) //如果试管没有该质因子,不用做
{
if(pipe_prime[j]%cell_prime[j]==0)
now=max(now,pipe_prime[j]/cell_prime[j]);
else now=max(now,pipe_prime[j]/cell_prime[j]+1); //记得要+1,整除时不用加
}
}
if(here){flag=true; if(now<minn)minn=now;} //如果该细胞可行,做个标志,替换
}
if(flag)cout<<minn<<endl; //如果可行
else cout<<-1<<endl;
return 0;
}