【NOIP2009普及组复赛】 题3:细胞分裂

题3:细胞分裂

( c e l l . p a s / c / c p p ) (cell.pas/c/cpp) (cell.pas/c/cpp)

【问题描述】

H a n k s Hanks Hanks 博士是 B T BT BT ( B i o − T e c h Bio-Tech BioTech,生物技术) 领域的知名专家。现在,他正在为一个细胞实验做准备工作:培养细胞样本。

H a n k s Hanks Hanks 博士手里现在有 N N N 种细胞,编号从 1   N 1~N 1 N,一个第i 种细胞经过 1 1 1 秒钟可以分裂为 S i S_i Si 个同种细胞( S i S_i Si 为正整数)。现在他需要选取某种细胞的一个放进培养皿,让其自由分裂,进行培养。一段时间以后,再把培养皿中的所有细胞平均分入 M M M 个试管,形成 M M M 份样本,用于实验。 H a n k s Hanks Hanks 博士的试管数 M M M 很大,普通的计算机的基本数据类型无法存储这样大的 M M M 值,但万幸的是, M M M 总可以表示为 m 1 m_1 m1 m 2 m_2 m2 次方,即 M = m 1 m 2 M = m_1^{m_2} M=m1m2 ,其中 m 1 , m 2 m_1,m_2 m1m2 均为基本数据类型可以存储的正整数。

注意,整个实验过程中不允许分割单个细胞,比如某个时刻若培养皿中有 4 4 4 个细胞, H a n k s Hanks Hanks 博士可以把它们分入 2 2 2 个试管,每试管内 2 2 2 个,然后开始实验。但如果培养皿中有 5 5 5个细胞,博士就无法将它们均分入 2 2 2 个试管。此时,博士就只能等待一段时间,让细胞们继续分裂,使得其个数可以均分,或是干脆改换另一种细胞培养。

为了能让实验尽早开始, H a n k s Hanks Hanks 博士在选定一种细胞开始培养后,总是在得到的细胞“刚好可以平均分入 M M M 个试管”时停止细胞培养并开始实验。现在博士希望知道,选择哪种细胞培养,可以使得实验的开始时间最早。

【输入】

输入文件名为 c e l l . i n cell.in cell.in,共有三行。

第一行有一个正整数 N N N,代表细胞种数。

第二行有两个正整数 m 1 , m 2 m1,m2 m1m2,以一个空格隔开, m 1 m 2 m_1^ {m_2} m1m2 即表示试管的总数 M M M

第三行有 N N N 个正整数,第 i i i 个数 S i S_i Si 表示第i 种细胞经过 1 1 1 秒钟可以分裂成同种细胞的个数。

【输出】

输出文件 c e l l . o u t cell.out cell.out 共一行,为一个整数,表示从开始培养细胞到实验能够开始所经过的
最少时间(单位为秒)。

如果无论 H a n k s Hanks Hanks 博士选择哪种细胞都不能满足要求,则输出整数 − 1 -1 1

【输入样例 1】 cell.in

1
2 1
3

[输出样例1] cell.out

-1

【输入输出样例1 说明】

经过 1 1 1 秒钟,细胞分裂成 3 3 3 个,经过 2 2 2 秒钟,细胞分裂成 9 9 9 个,……,可以看出无论怎么分
裂,细胞的个数都是奇数,因此永远不能分入 2 2 2 个试管。

【输入样例 2】cell.in

2
24 1
30 12

[输出样例2] cell.out

2

【输入输出样例2 说明】

1 1 1 种细胞最早在 3 3 3 秒后才能均分入 24 24 24 个试管,而第 2 2 2 种最早在 2 2 2 秒后就可以均分(每
试管 144 / ( 241 ) = 6 144/(241)=6 144/(241)=6 个)。故实验最早可以在 2 2 2 秒后开始。

【数据范围】

对于 50 % 50\% 50%的数据,有 m 1 m 2 ≤ 30000 m_1^ {m_2} ≤ 30000 m1m230000

对于所有的数据,有 1 ≤ N ≤ 10000 , 1 ≤ m 1 ≤ 30000 , 1 ≤ m 2 ≤ 10000 , 1 ≤ S i ≤ 2 , 000 , 000 , 000 1 \le N \le 10000,1 \le m_1 \le 30000,1 \le m_2 \le 10000,1 \le S_i \le 2,000,000,000 1N100001m1300001m2100001Si2,000,000,000

【代码如下】:

#include<bits/stdc++.h>
using namespace std;
const int maxn=30000+10;
int n,i,j,m1,m2,minn=2147483647;
int prime[maxn]={0};  //30000以内所有的质数
bool flag=false,here;  //flag为所有细胞,here为单个细胞的判断
int pipe_prime[maxn];  //试管的质因数分解
int cell_prime[maxn];  //细胞的质因数分解
int sum_prime=0,cell,now;  //30000以内质数总数记为sum_prime
bool pr(int k)  //判断是否为素数,不予以注释
{
    int m;
    for(m=2;m<=floor(sqrt(k));m++)
    if(k%m==0)return false;
    return true;
}
int main()  //主程序开始
{
    cin>>n; cin>>m1>>m2;
    for(i=2;i<=maxn;i++)  //把30000以内的质因数枚举出来
    if(pr(i))
    {
        sum_prime++;
        prime[sum_prime]=i;
    }
    i=1; while(m1!=1)  //为m1质因数分解
    {
        if(m1%prime[i]==0)
        while(m1%prime[i]==0)  //除到没有为止
        {pipe_prime[i]+=m2; m1/=prime[i]; }
        i++;
    }
    for(i=1;i<=n;i++)
    {
        cin>>cell; j=1; now=0; here=true;  //初始化
        memset(cell_prime,0,sizeof(cell_prime));  //初始化,加头文件cstring
        while(j<=sum_prime)  //大于30000的质因子忽略,即在30000内质因数分解
        {
            if(cell%prime[j]==0)
            while(cell%prime[j]==0)
            {cell_prime[j]++; cell/=prime[j]; }
            j++;
        }
        for(j=1;j<=sum_prime;j++)
        {
            if(pipe_prime[j]!=0&&cell_prime[j]==0)here=false;  //如果细胞没有试管所拥有的质因子,该细胞不可用
            if(pipe_prime[j]!=0&&cell_prime[j]!=0)  //如果试管没有该质因子,不用做
            {
                if(pipe_prime[j]%cell_prime[j]==0)
                now=max(now,pipe_prime[j]/cell_prime[j]);
                else now=max(now,pipe_prime[j]/cell_prime[j]+1);  //记得要+1,整除时不用加
            }
        }
        if(here){flag=true; if(now<minn)minn=now;}  //如果该细胞可行,做个标志,替换
    }
    if(flag)cout<<minn<<endl;  //如果可行
    else cout<<-1<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lpstudio

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值