Task04 线性代数

线性代数
Numpy 定义了 matrix 类型,使用该 matrix 类型创建的是矩阵对象,它们的加减乘除运算缺省采用矩阵方式计算,因此用法和Matlab十分类似。但是由于 NumPy 中同时存在 ndarray 和 matrix 对象,因此用户很容易将两者弄混。这有违 Python 的“显式优于隐式”的原则,因此官方并不推荐在程序中使用 matrix。在这里,我们仍然用 ndarray 来介绍。

矩阵和向量积
矩阵的定义、矩阵的加法、矩阵的数乘、矩阵的转置与二维数组完全一致,不再进行说明,但矩阵的乘法有不同的表示。

numpy.dot(a, b[, out])计算两个矩阵的乘积,如果是一维数组则是它们的内积。
【例1】

import numpy as np

x = np.array([1, 2, 3, 4, 5])
y = np.array([2, 3, 4, 5, 6])
z = np.dot(x, y)
print(z) # 70

x = np.array([[1, 2, 3], [3, 4, 5], [6, 7, 8]])
print(x)

[[1 2 3]

[3 4 5]

[6 7 8]]

y = np.array([[5, 4, 2], [1, 7, 9], [0, 4, 5]])
print(y)

[[5 4 2]

[1 7 9]

[0 4 5]]

z = np.dot(x, y)
print(z)

[[ 7 30 35]

[ 19 60 67]

[ 37 105 115]]

z = np.dot(y, x)
print(z)

[[ 29 40 51]

[ 76 93 110]

[ 42 51 60]]

注意:在线性代数里面讲的维数和数组的维数不同,如线代中提到的n维行向量在 Numpy 中是一维数组,而线性代数中的n维列向量在 Numpy 中是一个shape为(n, 1)的二维数组。

矩阵特征值与特征向量
numpy.linalg.eig(a) 计算方阵的特征值和特征向量。
numpy.linalg.eigvals(a) 计算方阵的特征值。
【例1】求方阵的特征值特征向量

import numpy as np

创建一个对角矩阵!

x = np.diag((1, 2, 3))
print(x)

[[1 0 0]

[0 2 0]

[0 0 3]]

print(np.linalg.eigvals(x))

[1. 2. 3.]

a, b = np.linalg.eig(x)

特征值保存在a中,特征向量保存在b中

print(a)

[1. 2. 3.]

print(b)

[[1. 0. 0.]

[0. 1. 0.]

[0. 0. 1.]]

检验特征值与特征向量是否正确

for i in range(3):
if np.allclose(a[i] * b[:, i], np.dot(x, b[:, i])):
print(‘Right’)
else:
print(‘Error’)

Right

Right

Right

【例2】判断对称阵是否为正定阵(特征值是否全部为正)。

import numpy as np

A = np.arange(16).reshape(4, 4)
print(A)

[[ 0 1 2 3]

[ 4 5 6 7]

[ 8 9 10 11]

[12 13 14 15]]

A = A + A.T # 将方阵转换成对称阵
print(A)

[[ 0 5 10 15]

[ 5 10 15 20]

[10 15 20 25]

[15 20 25 30]]

B = np.linalg.eigvals(A) # 求A的特征值
print(B)

[ 6.74165739e+01 -7.41657387e+00 1.82694656e-15 -1.72637110e-15]

判断是不是所有的特征值都大于0,用到了all函数,显然对称阵A不是正定的

if np.all(B > 0):
print(‘Yes’)
else:
print(‘No’)

No

矩阵分解
奇异值分解
有关奇异值分解的原理:奇异值分解(SVD)及其应用

u, s, v = numpy.linalg.svd(a, full_matrices=True, compute_uv=True, hermitian=False)奇异值分解
a 是一个形如(M,N)矩阵
full_matrices的取值是为False或者True,默认值为True,这时u的大小为(M,M),v的大小为(N,N)。否则u的大小为(M,K),v的大小为(K,N) ,K=min(M,N)。
compute_uv的取值是为False或者True,默认值为True,表示计算u,s,v。为False的时候只计算s。
总共有三个返回值u,s,v,u大小为(M,M),s大小为(M,N),v大小为(N,N),a = usv。
其中s是对矩阵a的奇异值分解。s除了对角元素不为0,其他元素都为0,并且对角元素从大到小排列。s中有n个奇异值,一般排在后面的比较接近0,所以仅保留比较大的r个奇异值。
注:Numpy中返回的v是通常所谓奇异值分解a=usv’中v的转置。

【例1】

import numpy as np

A = np.array([[4, 11, 14], [8, 7, -2]])
print(A)

[[ 4 11 14]

[ 8 7 -2]]

u, s, vh = np.linalg.svd(A, full_matrices=False)
print(u.shape) # (2, 2)
print(u)

[[-0.9486833 -0.31622777]

[-0.31622777 0.9486833 ]]

print(s.shape) # (2,)
print(np.diag(s))

[[18.97366596 0. ]

[ 0. 9.48683298]]

print(vh.shape) # (2, 3)
print(vh)

[[-0.33333333 -0.66666667 -0.66666667]

[ 0.66666667 0.33333333 -0.66666667]]

a = np.dot(u, np.diag(s))
a = np.dot(a, vh)
print(a)

[[ 4. 11. 14.]

[ 8. 7. -2.]]

【例2】

import numpy as np

A = np.array([[1, 1], [1, -2], [2, 1]])
print(A)

[[ 1 1]

[ 1 -2]

[ 2 1]]

u, s, vh = np.linalg.svd(A, full_matrices=False)
print(u.shape) # (3, 2)
print(u)

[[-5.34522484e-01 -1.11022302e-16]

[ 2.67261242e-01 -9.48683298e-01]

[-8.01783726e-01 -3.16227766e-01]]

print(s.shape) # (2,)
print(np.diag(s))

[[2.64575131 0. ]

[0. 2.23606798]]

print(vh.shape) # (2, 2)
print(vh)

[[-0.70710678 -0.70710678]

[-0.70710678 0.70710678]]

a = np.dot(u, np.diag(s))
a = np.dot(a, vh)
print(a)

[[ 1. 1.]

[ 1. -2.]

[ 2. 1.]]

QR分解
q,r = numpy.linalg.qr(a, mode=‘reduced’)计算矩阵a的QR分解。
a是一个(M, N)的待分解矩阵。
mode = reduced:返回(M, N)的列向量两两正交的矩阵q,和(N, N)的三角阵r(Reduced QR分解)。
mode = complete:返回(M, M)的正交矩阵q,和(M, N)的三角阵r(Full QR分解)。
【例1】

import numpy as np

A = np.array([[2, -2, 3], [1, 1, 1], [1, 3, -1]])
print(A)

[[ 2 -2 3]

[ 1 1 1]

[ 1 3 -1]]

q, r = np.linalg.qr(A)
print(q.shape) # (3, 3)
print(q)

[[-0.81649658 0.53452248 0.21821789]

[-0.40824829 -0.26726124 -0.87287156]

[-0.40824829 -0.80178373 0.43643578]]

print(r.shape) # (3, 3)
print®

[[-2.44948974 0. -2.44948974]

[ 0. -3.74165739 2.13808994]

[ 0. 0. -0.65465367]]

print(np.dot(q, r))

[[ 2. -2. 3.]

[ 1. 1. 1.]

[ 1. 3. -1.]]

a = np.allclose(np.dot(q.T, q), np.eye(3))
print(a) # True
【例2】

import numpy as np

A = np.array([[1, 1], [1, -2], [2, 1]])
print(A)

[[ 1 1]

[ 1 -2]

[ 2 1]]

q, r = np.linalg.qr(A, mode=‘complete’)
print(q.shape) # (3, 3)
print(q)

[[-0.40824829 0.34503278 -0.84515425]

[-0.40824829 -0.89708523 -0.16903085]

[-0.81649658 0.27602622 0.50709255]]

print(r.shape) # (3, 2)
print®

[[-2.44948974 -0.40824829]

[ 0. 2.41522946]

[ 0. 0. ]]

print(np.dot(q, r))

[[ 1. 1.]

[ 1. -2.]

[ 2. 1.]]

a = np.allclose(np.dot(q, q.T), np.eye(3))
print(a) # True
【例3】

import numpy as np

A = np.array([[1, 1], [1, -2], [2, 1]])
print(A)

[[ 1 1]

[ 1 -2]

[ 2 1]]

q, r = np.linalg.qr(A)
print(q.shape) # (3, 2)
print(q)

[[-0.40824829 0.34503278]

[-0.40824829 -0.89708523]

[-0.81649658 0.27602622]]

print(r.shape) # (2, 2)
print®

[[-2.44948974 -0.40824829]

[ 0. 2.41522946]]

print(np.dot(q, r))

[[ 1. 1.]

[ 1. -2.]

[ 2. 1.]]

a = np.allclose(np.dot(q.T, q), np.eye(2))
print(a) # True (说明q为正交矩阵)
Cholesky分解
L = numpy.linalg.cholesky(a) 返回正定矩阵a的 Cholesky 分解a = L*L.T,其中L是下三角。
【例1】

import numpy as np

A = np.array([[1, 1, 1, 1], [1, 3, 3, 3],
[1, 3, 5, 5], [1, 3, 5, 7]])
print(A)

[[1 1 1 1]

[1 3 3 3]

[1 3 5 5]

[1 3 5 7]]

print(np.linalg.eigvals(A))

[13.13707118 1.6199144 0.51978306 0.72323135]

L = np.linalg.cholesky(A)
print(L)

[[1. 0. 0. 0. ]

[1. 1.41421356 0. 0. ]

[1. 1.41421356 1.41421356 0. ]

[1. 1.41421356 1.41421356 1.41421356]]

print(np.dot(L, L.T))

[[1. 1. 1. 1.]

[1. 3. 3. 3.]

[1. 3. 5. 5.]

[1. 3. 5. 7.]]

范数和其它数字
矩阵的范数
numpy.linalg.norm(x, ord=None, axis=None, keepdims=False) 计算向量或者矩阵的范数。
根据ord参数的不同,计算不同的范数:
image
image
692×312 23.8 KB
【例1】求向量的范数。

import numpy as np

x = np.array([1, 2, 3, 4])

print(np.linalg.norm(x, ord=1))

10.0

print(np.sum(np.abs(x)))

10

print(np.linalg.norm(x, ord=2))

5.477225575051661

print(np.sum(np.abs(x) ** 2) ** 0.5)

5.477225575051661

print(np.linalg.norm(x, ord=-np.inf))

1.0

print(np.min(np.abs(x)))

1

print(np.linalg.norm(x, ord=np.inf))

4.0

print(np.max(np.abs(x)))

4

【例2】求矩阵的范数

import numpy as np

A = np.array([[1, 2, 3, 4], [2, 3, 5, 8],
[1, 3, 5, 7], [3, 4, 7, 11]])

print(A)

[[ 1 2 3 4]

[ 2 3 5 8]

[ 1 3 5 7]

[ 3 4 7 11]]

print(np.linalg.norm(A, ord=1)) # 30.0
print(np.max(np.sum(A, axis=0))) # 30

print(np.linalg.norm(A, ord=2))

20.24345358700576

print(np.max(np.linalg.svd(A, compute_uv=False)))

20.24345358700576

print(np.linalg.norm(A, ord=np.inf)) # 25.0
print(np.max(np.sum(A, axis=1))) # 25

print(np.linalg.norm(A, ord=‘fro’))

20.273134932713294

print(np.sqrt(np.trace(np.dot(A.T, A))))

20.273134932713294

方阵的行列式
numpy.linalg.det(a) 计算行列式。
【例】计算行列式。

import numpy as np

x = np.array([[1, 2], [3, 4]])
print(x)

[[1 2]

[3 4]]

print(np.linalg.det(x))

-2.0000000000000004

矩阵的秩
numpy.linalg.matrix_rank(M, tol=None, hermitian=False) 返回矩阵的秩。
【例】计算矩阵的秩。

import numpy as np

I = np.eye(3) # 先创建一个单位阵
print(I)

[[1. 0. 0.]

[0. 1. 0.]

[0. 0. 1.]]

r = np.linalg.matrix_rank(I)
print® # 3

I[1, 1] = 0 # 将该元素置为0
print(I)

[[1. 0. 0.]

[0. 0. 0.]

[0. 0. 1.]]

r = np.linalg.matrix_rank(I) # 此时秩变成2
print® # 2
矩阵的迹
numpy.trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None) 方阵的迹就是主对角元素之和。
【例】计算方阵的迹。

import numpy as np

x = np.array([[1, 2, 3], [3, 4, 5], [6, 7, 8]])
print(x)

[[1 2 3]

[3 4 5]

[6 7 8]]

y = np.array([[5, 4, 2], [1, 7, 9], [0, 4, 5]])
print(y)

[[5 4 2]

[1 7 9]

[0 4 5]]

print(np.trace(x)) # A的迹等于A.T的迹

13

print(np.trace(np.transpose(x)))

13

print(np.trace(x + y)) # 和的迹 等于 迹的和

30

print(np.trace(x) + np.trace(y))

30

解方程和逆矩阵
逆矩阵(inverse matrix)
设 A 是数域上的一个 n 阶矩阵,若在相同数域上存在另一个 n 阶矩阵 B,使得:AB=BA=E(E 为单位矩阵),则我们称 B 是 A 的逆矩阵,而 A 则被称为可逆矩阵。

numpy.linalg.inv(a) 计算矩阵a的逆矩阵(矩阵可逆的充要条件:det(a) != 0,或者a满秩)。
【例】计算矩阵的逆矩阵。

import numpy as np

A = np.array([[1, -2, 1], [0, 2, -1], [1, 1, -2]])
print(A)

[[ 1 -2 1]

[ 0 2 -1]

[ 1 1 -2]]

求A的行列式,不为零则存在逆矩阵

A_det = np.linalg.det(A)
print(A_det)

-2.9999999999999996

A_inverse = np.linalg.inv(A) # 求A的逆矩阵
print(A_inverse)

[[ 1.00000000e+00 1.00000000e+00 -1.11022302e-16]

[ 3.33333333e-01 1.00000000e+00 -3.33333333e-01]

[ 6.66666667e-01 1.00000000e+00 -6.66666667e-01]]

x = np.allclose(np.dot(A, A_inverse), np.eye(3))
print(x) # True
x = np.allclose(np.dot(A_inverse, A), np.eye(3))
print(x) # True

A_companion = A_inverse * A_det # 求A的伴随矩阵
print(A_companion)

[[-3.00000000e+00 -3.00000000e+00 3.33066907e-16]

[-1.00000000e+00 -3.00000000e+00 1.00000000e+00]

[-2.00000000e+00 -3.00000000e+00 2.00000000e+00]]

求解线性方程组
numpy.linalg.solve(a, b) 求解线性方程组或矩阵方程。
【例】求解线性矩阵方程

x + 2y + z = 7

2x - y + 3z = 7

3x + y + 2z =18

import numpy as np

A = np.array([[1, 2, 1], [2, -1, 3], [3, 1, 2]])
b = np.array([7, 7, 18])
x = np.linalg.solve(A, b)
print(x) # [ 7. 1. -2.]

x = np.linalg.inv(A).dot(b)
print(x) # [ 7. 1. -2.]

y = np.allclose(np.dot(A, x), b)
print(y) # True
参考文献

https://www.cnblogs.com/moon1992/p/4960700.html
https://www.cnblogs.com/moon1992/p/4948793.html
练习
(1)计算两个数组a和数组b之间的欧氏距离。

a = np.array([1, 2, 3, 4, 5])
b = np.array([4, 5, 6, 7, 8])
【知识点:数学函数、线性代数】

如何计算两个数组之间的欧式距离?
(2)计算矩阵的行列式和矩阵的逆
【知识点:线性代数】

np.diag([5,5,5,5,5])
array([[5, 0, 0, 0, 0],
[0, 5, 0, 0, 0],
[0, 0, 5, 0, 0],
[0, 0, 0, 5, 0],
[0, 0, 0, 0, 5]])
(3)给定矩阵A和数组b,求解线性方程组:

【知识点:线性代数】

import numpy as np
A=np.array([[1, -2, 1],[0 ,2 ,-8],[-4, 5 ,9]])
b=np.array([0,8,-9])

(4)给定矩阵A[[4,-1,1],[-1,3,-2],[1,-2,3]]计算特征值和特征向量

【知识点:线性代数】

关于求解矩阵特征值与特征向量
幂法
import numpy as np

a = [[4,-1,1],[-1,3,-2],[1,-2,3]]#系数矩阵
A = np.mat(a)
N = len(A)

U = np.mat([1]*N).T

V = np.mat([1]*N).T

U = np.mat([0,1,1]).T
V = np.mat([0,1,1]).T
sigma = 0.000001#精度
M = 1000#最大迭代次数
m = 1
k = 0
before = m
while(k<M):
before = m
V = A*U
m = max(V)#[0,0]
U = V/m
if(abs(m-before)<sigma):
print(“特征值为”,(m),sep=’\n’)
print(“特征向量为”,(U),sep=’\n’)
break
k += 1
if k==M:
print(‘计算失败,k=’,k)
反幂法

import numpy as np
a = [[4,-1,1],[-1,3,-2],[1,-2,3]]#系数矩阵
N = len(a)

A = np.mat(a)
U = np.mat([1]*N).T
V = np.mat([1]N).T
sigma = 0.000001#精度
M = 1000#最大迭代次数
m = 1
k = 0
before = m
while(k<M):
before = m
V = A.I
U
m = max(V)[0,0]
U = V/m
if(abs(m-before)<sigma):
print(“特征值为”,(1/m),sep=’\n’)
print(“特征向量为”,(U),sep=’\n’)
break
k += 1
if k==M:
print(‘计算失败,k=’,k)
原点平移加速法
import numpy as np

a = [[4,-1,1],[-1,3,-2],[1,-2,3]]#系数矩阵

a = [[4,-1,1],[-1,3,-2],[1,-2,3]]#系数矩阵
N = len(a)
#原点加速法:
step = 2.5
for i in range(N):
a[i][i] -=step
A = np.mat(a)

U = np.mat([1]*N).T
V = np.mat([1]N).T
sigma = 0.000001#精度
M = 1000#最大迭代次数
m = 1
k = 0
before = m
while(k<M):
before = m
V = A
U
m = max(V)[0,0]
U = V/m
if(abs(m-before)<sigma):
print(“特征值为”,(1/m),sep=’\n’)
print(“特征向量为”,(U),sep=’\n’)
break
k += 1
if k==M:
print(‘计算失败,k=’,k)
Numpy
import numpy as np
a = [[4,-1,1],[-1,3,-2],[1,-2,3]]#系数矩阵
N = len(a)

A = np.mat(a)
#计算特征值
print(np.linalg.eigvals(A))
#计算特征向量
print(np.linalg.eig(A))

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值