三角形最佳路径问题的原理解析

三角形最佳路径:
在三角形中,从三角形的顶部到底部的不同路径中,经过路径上的数字之和(路径和)最大的一条路径就是最佳路径(并非唯一)。
注意:
路径上的每一步只能走当前数字下方相邻最近的两个数字之一(正下方或右下方)。
以下图为例:
在这里插入图片描述
分析:
采用动态规划思想,首先分解子问题,默认从顶部到底部数字的最佳路径,每一段子路径对应的每一个数字都是最优的。将三角形数字数据存入一个二维数组中,用D(i,j)表示第 i 行第 j 列的数字值。从D(i,j)出发,则下一步为D(i+1,j)或D(i+1,j+1)。从而推导出递推公式。
主要思路:
从最后一行开始向上递推,判断正下方和右下方谁的数大,选择之后加到上一行,生成一个新的数。
第一轮:
原第四行数值
2==> 2+5=7
7==> 7+5=12
4==> 4+6=10
4==> 4+6=10
在这里插入图片描述
第二轮:
原第三行数值
8==> 8+12=20
1==> 1+12=13
0==> 0+10=10
在这里插入图片描述
第三轮:
原第二行数值
3==> 3+20=23
8==> 8+13=21
在这里插入图片描述
第四轮:
原第一行数值
7==> 7+23=30
在这里插入图片描述

最后得到的最大值为:30,即三角形最佳路径为30.
具体完整的代码如下:

#include <iostream>
#define MAX_NUM 100
using namespace std;

//动态规划求三角形最佳路径值 
int D[MAX_NUM + 10][MAX_NUM + 10];            //存储三角形的数组
int N;                                        //三角形的层数
int MaxSum[MAX_NUM + 10][MAX_NUM + 10];      //存储每一个点到底层最优路径的值

int main()
{	int i, j;
	cout<<"请输入三角形行数:"<<endl;
	cin>>N;                    				//输入N值
	cout<<"请输入三角形各点数值:"<<endl;
	for( i = 1; i <= N; i ++ )
		for( j = 1; j <= i; j ++ )
			cin>>D[i][j];       		 //递归输入各点的值
	for( j = 1; j <= N; j ++ )
		MaxSum[N][j] = D[N][j];          //将底层各点值存入最优路径数组
	//根据转移方程递归计算 
	for( i = N ; i > 1 ; i -- )
		for( j = 1; j < i ; j ++ ){ 
			if( MaxSum[i][j] > MaxSum[i][j+1] ){
				MaxSum[i-1][j] = MaxSum[i][j] + D[i-1][j];				
			}else{
				MaxSum[i-1][j] = MaxSum[i][j+1] + D[i-1][j];				
			}			
		}
	//输出最优路径的值 
	cout<<"最佳路径的值为:"<<endl;
	cout<<MaxSum[1][1]<<endl;
	return 0;
}

对于其他类似题目可根据具体原理进行迁移学习.
动态规划算法的一般步骤:

  1. 描述最优解的结构。
  2. 对最优解的值进行递归定义。
  3. 按照自底向上的方法计算最优解的值。
  4. 由第3步计算出的结果构造一个最优解。

使用动态规划求解必须满足的条件:

  1. 最优化原理。
  2. 无后效性:指一个多阶段决策的问题,每一阶段的决策只取决于前一个阶段的决策,而与更靠前的阶段决策无关。
  3. 重叠子问题。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值