PMML-ONNX-AI Serving等深度学习模型上线-部署实战经验分享

文章探讨了AI模型从开发到部署的挑战,特别是数据科学家和开发运维工程师的角色差异。通过引用业界资源,分享了使用PMML、ONNX和AIServing进行模型线上部署的经验,旨在帮助解决模型部署的复杂性问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AI的广泛应用是由AI在开源技术的进步推动的,利用功能强大的开源模型库,数据科学家们可以很容易的训练一个性能不错的模型。但是因为模型生产环境和开发环境的不同,涉及到不同角色人员:模型训练是数据科学家和数据分析师的工作,但是模型部署是开发和运维工程师的事情,导致模型上线部署却不是那么容易。

本资源整理了业界PMML-ONNX-AI Serving等进行深度学习模型线上部署的经验,分享给大家。

资源整理自网络,源地址ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lqfarmer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值