机械不学习
码龄10年
关注
提问 私信
  • 博客:22,964
    22,964
    总访问量
  • 14
    原创
  • 97,470
    排名
  • 998
    粉丝
  • 48
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2015-06-17
博客简介:

lqql2012的博客

查看详细资料
  • 原力等级
    当前等级
    1
    当前总分
    51
    当月
    8
个人成就
  • 获得79次点赞
  • 内容获得1次评论
  • 获得138次收藏
创作历程
  • 5篇
    2024年
  • 7篇
    2023年
  • 2篇
    2020年
成就勋章
TA的专栏
  • slam
    3篇
  • vins
    1篇
  • 基础知识
    3篇
  • deep_learning
    5篇
  • 优秀论文阅读
    1篇
  • 语义分割
    2篇
  • 工作
    1篇
  • opencv
    1篇
  • 2d激光
  • 3D Restruct
  • 工作工具
  • 优秀论文
  • DSO
    1篇
  • 3d_hand_pose
  • 移动端目标检测
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习pytorch图像处理
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

视觉SFM详解及松耦合初始化

0整体框架1 数据预处理camera:1)提取Harris角点,KLT金字塔光流跟踪相邻帧;2)2 维特征点先矫正为不失真的,然后在通过外点剔除后投影到一个单位球面上;3)去除异常点:先进行F矩阵测试,通过RANSAC去除异常点;4)关键帧选取:1、当前帧相对最近的关键帧的特征平均视差大于一个阈值就为关键帧(因为视差可以根据平移和旋转共同得到,而纯旋转则导致不能三角化成功,所以这一步需要IMU预积分进行补偿)2、当前帧跟踪到的特征点数量小于阈值视为关键帧;IMU:1...
原创
发布博客 2024.09.18 ·
1075 阅读 ·
18 点赞 ·
0 评论 ·
10 收藏

Quaternion kinematics for ESKF

1, 四元数常用性质2 ESKF2.1 ESKF中常用的变量 (2.1.0)需要注意的是,这里定义的旋转的误差状态是local的,在R的右侧,的参考系是局部坐标系。而IMU的gyro给出的测量也是相对于局部坐标系的。这种表达更容易使用IMU的测量其中: (2.1.1)真实的加速度 at 和 角速度ωt 和 body坐标系下带噪音的IMU测...
原创
发布博客 2024.09.18 ·
707 阅读 ·
11 点赞 ·
0 评论 ·
9 收藏

Real-time Hair Segmentation and Recoloring on Mobile GPUs

问题:如何在手机端实现 实时、细致、时间连续的 Hair Mask 分割?首先一个高质量的数据集是关键,1.1.1 网络输入为了确保帧间输出的时间连续性,一般使用的LSTM耗时太高,因此输入使用:4 channels (RGB + previous frame mask) → current frame mask1.1.2 数据增强为了实现高质量的视频分割效果,除了实现帧到帧的时间连续性之外,我们还需要考虑时间的不连续性,例如突然出现在摄像机视野中的人:因此在使用 previou..
原创
发布博客 2024.09.18 ·
386 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

移动端语义分割

1.1 基础模型1.1.1GhostNet图1是由ResNet-50中的第一个残差块生成的某些中间特征图的可视化。从图中我们可以看出,这里面有很多特征图是具有高度相似性的(在图中分别用不同的颜色示意),换句话说,就是存在许多的冗余特征图。所以从另一个角度想,我们是不是可以利用一系列的线性变化,以很小的代价生成许多能从原始特征发掘所需信息的“幻影”特整图呢?这个便是整篇文章的核心思想深度卷积神经网络通常是由大量的卷积块所组成的,导致大量的计算成本。尽管最近的工作,例如Mobile...
原创
发布博客 2024.09.18 ·
601 阅读 ·
14 点赞 ·
0 评论 ·
11 收藏

IMU-Lidar 标定

配准技术在空间三维建模中具有重要作用,传统的ICP算法存在初始位置要求高、迭代不收敛、计算量大等问题,解析法直接解算出变换参数,无需迭代,计算效率较高。解析法则避免了迭代法的不足之处,旋转矩阵是一种正交矩阵,基于正交矩阵的坐标变换算法是一种传统的解析算法,利用矩阵方程的最小二乘最佳逼近正交解求解过程求解旋转矩阵。但是该方法在求解坐标变换参数时是分步求解,有可能会造成误差累积的出现,影响配准精度。研究表明,对偶四元数能够同时描述刚体的旋转和平移,在对偶四元数的基础上进行点云配准算法分析能够解决配准参数分步
原创
发布博客 2024.09.18 ·
965 阅读 ·
9 点赞 ·
0 评论 ·
5 收藏

cmake 编译及Debug

1.1.1undefined reference to ** 问题以 libSM 的报错为例:1)首先得明确是什么库出了问题,需要先查找库查询limSM库安装包名字 :apt-cache search libSM 第一行为 : libsm-dev2)查看libSM.so安装位置ldconfig -p|grep libSM输出:(base) jason:~$ ldconfig -p|grep libSM libSM.so.6 (libc6,x86-64) => /...
原创
发布博客 2023.06.25 ·
3063 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

常识-eigen-opencv-ceres

11)python 中 im.shape 为(高 y,宽 x,通道数),分别对应width ,heightpython转c++代码时用的上2)使用Mat(3, 1, CV_32F, test).clone(); 方式构建的Mat,是垂直保存的,在做矩阵和向量的乘法时,就不用转置了float test[] = { 1, 2, 3 };float test22[] = { 2, 4, 6 };Mat testMat = Mat(3, 1, CV_32F, test)....
原创
发布博客 2023.06.25 ·
459 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

KF 和 EKF 实践

KF2 Extended Kalman Filter2.1 边缘分布和条件分布回顾一下高斯分布:如果原变量为高斯分布,则边缘化和条件概率仍然满足高斯分布则边缘分布和条件分布的模型:2.2 KF和EKFEKF相较于KF,就是把KF的状态转移矩阵和观测矩阵换为关于状态变量的雅可比矩阵2.2.0 推到卡尔曼滤波简单理解卡尔曼增益可以视为一种权重,状态估计的协方差矩阵将不停的更新适应,使得估计误差最小,其实相当于一种迭代...
原创
发布博客 2023.06.25 ·
644 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

语义分割---边缘优化

视频分割在移动端的算法进展综述
原创
发布博客 2023.06.25 ·
4234 阅读 ·
10 点赞 ·
0 评论 ·
35 收藏

目标跟踪算法总结

一 ,运动目标检测算法1,差图法1.1 背景差分法(不适用于动态场景)输入图像和背景模型进行比较,通过判断灰度特征或者直方图统计信息的变化来判断异常情况的发生,其关键在于创建好的背景模板。常用的方法有:直接抽取视频序列中的某一副图像,或者计算多幅图像的平均值作为背景1.2 时间差法(容易产生空洞现象,得到的边缘不连续)在连续的图像序列中两帧或者三帧相邻帧间采用基于像素的时间
原创
发布博客 2023.06.25 ·
222 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

SORT and DeepSORT

一、基础知识1.1匈牙利算法和KM算法Hungarian Algorithm 与 Kuhn-Munkres Algorithm 是用来解决多目标跟踪中的数据关联问题,通过求解二分图的最大匹配问题。所谓二分图就是能集合分成两组,U,V。其中,U上的点不能相互连通,只能连去V中的点,同理,V中的点不能相互连通,只能连去U中的点。1)匈牙利算法通过递归和回溯来实现分配1) 2)...
原创
发布博客 2023.06.25 ·
85 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

神经网络优化思路

一,通用优化技巧二,目标检测优化2.1 如何更好的检测小目标常用的方法有:第一种:图像金字塔(不常用),将输入图片放缩成不同比例,将预测结果融合得到最终输出 第二种:特征融合,融合 Encoder阶段的多尺度特征和Decoder上采样特征以恢复空间分辨率 第三种:在原始模型的顶端叠加额外的模块,以捕捉像素间长距离信息。例如Dense CRF,或者叠加一些其他的...
原创
发布博客 2023.06.25 ·
2461 阅读 ·
5 点赞 ·
0 评论 ·
18 收藏

DSO预备知识

1
原创
发布博客 2020.05.18 ·
1306 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

ssd 详解

1.1.1 网络结构ssd的基础网络和vgg16是一样的不过全连接层换成了conv6+relu+conv7+relu.其后的层称为extra layer以得到更多不同尺寸的feature map. 并且对网络中conv4_3, conv7,conv8_2,conv9_2,conv10_2,conv11_2这六个layer的feature map再做卷积,得到类别和位置信息.具体操作为:分别用2组3 x 3的卷积核去做卷积,一个负责预测类别,一个负责预测位置.卷积核的个数分别为boxnum x cl
原创
发布博客 2020.05.11 ·
6714 阅读 ·
6 点赞 ·
0 评论 ·
32 收藏

caffe-cpu版本常用安装库-utuntu16.04-anacond3---及常见错误

发布资源 2018.01.19 ·
rar
加载更多