图像的梯度

本文深入探讨了在图像处理中如何使用梯度概念来理解图像的局部变化。通过定义图像在x和y方向上的梯度Gx和Gy,我们能够识别图像中亮度变化最显著的方向。文章详细解释了离散图像上梯度的计算方法,以及如何简化Gxy的公式,为后续的图像处理和特征提取提供基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在数学中,用导数来表示函数的变化率,而梯度是一个有大小和方向的矢量,指向函数值变化最快的方向。同样我们可以将一幅图像,看成一二维的函数f(x,y),那么该图像在x,y方向的梯度记作Gx,Gy。f(x,y)是离散的,所以梯度以连续两点的差来进行计算,如下:

Gx=f(x+1,y)-f(x,y);

Gy=f(x,y+1)-f(x,y);

而对于x,y方向上的梯度G_{xy}=\sqrt{G^{^{2}}x+G^{^{2}}y}

由于该公式有平方又有开放,通常将Gxy的公式简化为Gxy = |Gx| + |Gy|;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值