Description
JOI君有N个装在手机上的挂饰,编号为1...N。 JOI君可以将其中的一些装在手机上。
JOI君的挂饰有一些与众不同——其中的一些挂饰附有可以挂其他挂件的挂钩。每个挂件要么直接挂在手机上,要么挂在其他挂件的挂钩上。直接挂在手机上的挂件最多有1个。
此外,每个挂件有一个安装时会获得的喜悦值,用一个整数来表示。如果JOI君很讨厌某个挂饰,那么这个挂饰的喜悦值就是一个负数。
JOI君想要最大化所有挂饰的喜悦值之和。注意不必要将所有的挂钩都挂上挂饰,而且一个都不挂也是可以的。
Input
第一行一个整数N,代表挂饰的个数。
接下来N行,第i行(1<=i<=N)有两个空格分隔的整数Ai和Bi,表示挂饰i有Ai个挂钩,安装后会获得Bi的喜悦值。
Output
输出一行一个整数,表示手机上连接的挂饰总和的最大值
Sample Input
5
0 4
2 -2
1 -1
0 1
0 3
0 4
2 -2
1 -1
0 1
0 3
Sample Output
5
HINT
将挂饰2直接挂在手机上,然后将挂饰1和挂饰5分别挂在挂饰2的两个挂钩上,可以获得最大喜悦值4-2+3=5。
1<=N<=2000
0<=Ai<=N(1<=i<=N)
-10^6<=Bi<=10^6(1<=i<=N)
Source
JOI 2013~2014 春季training合宿 竞技4 By PoPoQQQ
我们先按照挂钩数排序,然后DP
f[i][j]表示前i个剩下j个挂钩的最大ans
f[i][j]=max(f[i][j],f[i-1][j]);
f[i][j-1+a[i].s]=max(f[i][j-1+a[i].s],f[i-1][j]+a[i].x);
大概这样。。然后当j-1+a[i].s比n大的时候,转移到f[i][n]上
因为有n个钩子就足够了
#include<cstdio>
#include<algorithm>
using namespace std;
struct save
{
int s;
long long x;
bool operator <(save y) const
{
return s>y.s;
}
}a[2001];
long long f[2001][2001];
int main()
{
int n;
scanf("%d",&n);
int i,j;
for(i=1;i<=n;i++)
scanf("%d%lld",&a[i].s,&a[i].x);
sort(a+1,a+1+n);
long long ax=-(long long)10000000*(long long)10000000;
for(i=0;i<=n;i++)
for(j=0;j<=n;j++)
f[i][j]=ax;
f[0][0]=0;
f[0][1]=0;
for(i=1;i<=n;i++)
{
for(j=0;j<=n;j++)
{
f[i][j]=max(f[i][j],f[i-1][j]);
if(j>0&&f[i-1][j]!=ax)
{
if(j-1+a[i].s<=n)
f[i][j-1+a[i].s]=max(f[i][j-1+a[i].s],f[i-1][j]+a[i].x);
else
f[i][n]=max(f[i][n],f[i-1][j]+a[i].x);
}
}
}
long long ans=0;
for(i=0;i<=n;i++)
ans=max(ans,f[n][i]);
printf("%lld\n",ans);
return 0;
}