Matrix Equation

矩阵方程

       矩阵方程与线性方程组,向量方程的关系密切,且在解决实际问题时它们经常会发生相互转化,因此学习矩阵方程时最好结合线性方程组,向量方程一起考虑。

1.1 线性方程组

(1.1) a 1 x 1 + a 2 x 2 + a 3 x 3 = b 1 a 4 x 1 + a 5 x 2 + a 6 x 3 = b 2 a 7 x 1 + a 8 x 2 + a 9 x 3 = b 3 \begin{aligned} a_1 x_1+a_2 x_2+a_3 x_3=b_1\\ a_4 x_1+a_5 x_2+a_6 x_3=b_2\\ a_7 x_1+a_8 x_2+a_9 x_3=b_3 \end{aligned}\tag{1.1} a1x1+a2x2+a3x3=b1a4x1+a5x2+a6x3=b2a7x1+a8x2+a9x3=b3(1.1)

  1. 定义
           形如 a 1 x 1 + a 2 x 2 + ⋯ + a n x n = b a_1 x_1+a_2 x_2+\dots+a_n x_n=b a1x1+a2x2++anxn=b 的方程称为线性方程,其中 b b b a 1 , a 2 , … , a n a_1,a_2,\dots,a_n a1,a2,,an 是实数或复数,通常为已知数。
           线性方程组由一个或几个包含相同变量的线性方程组成的。

  2. 求解方法
           使用行化简算法,先将线性方程组变为增广矩阵,然后利用行初等变换将其转化为简化阶梯形,进而求解变量。

  3. 重要定理
           当线性方程组的增广矩阵的最右列非主元列时,线性方程组有解即线性方程组相容。

1.2 向量方程

       将线性方程组(1.1)中的系数用向量表示为如下形式:
x 1 a 1 + x 2 a 2 + x 3 a 3 = b a 1 = ( a 1 , a 4 , a 7 ) a 2 = ( a 2 , a 5 , a 8 ) a 3 = ( a 3 , a 6 , a 9 ) b = ( b 1 , b 2 , b 3 ) x_1 \mathbf{a_1}+x_2 \mathbf{a_2}+x_3 \mathbf{a_3}=\mathbf{b}\\ \mathbf{a_1}=(a_1,a_4,a_7)\\ \mathbf{a_2}=(a_2,a_5,a_8)\\ \mathbf{a_3}=(a_3,a_6,a_9)\\ \mathbf{b}=(b_1,b_2,b_3) x1a1+x2a2+x3a3=ba1=(a1,a4,a7)a2=(a2,a5,a8)a3=(a3,a6,a9)b=(b1,b2,b3)

  1. 重要定理
           仅含一列的矩阵称为列向量,或简称向量;
           向量方程 x 1 a 1 + x 2 a 2 + x   3 a 3 = b x_1 \mathbf{a_1}+x_2 \mathbf{a_2}+x~_3 \mathbf{a_3}=\mathbf{b} x1a1+x2a2+x 3a3=b 与增广矩阵为 [ a 1 a 2 a 3 b ] \left[ \begin{matrix} \mathbf{a_1} &\mathbf{a_2} &\mathbf{a_3} &\mathbf{b} \end{matrix} \right] [a1a2a3b]
    的线性方程组有相同的结集。

  2. 求解方法
           转换为增广矩阵,同样利用行化简算法求解。

1.3 矩阵方程

       向量的线性组合可视为矩阵与向量的乘积,线性方程组(1.1)用矩阵表示为如下形式:
A x = b x = ( x 1 , x 2 , x 3 ) b = ( b 1 , b 2 , b 3 ) A = [ a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 ] A\mathbf{x}=\mathbf{b}\\ \mathbf{x}=(x_1,x_2,x_3)\\ \mathbf{b}=(b_1,b_2,b_3)\\ A=\left[\begin{matrix} a_1 &a_2 &a_3\\ a_4 &a_5 &a_6\\ a_7 &a_8 &a_9 \end{matrix}\right] Ax=bx=(x1,x2,x3)b=(b1,b2,b3)A=a1a4a7a2a5a8a3a6a9

  1. 定义
           形如 A x = b A\mathbf{x}=\mathbf{b} Ax=b 的方程为矩阵方程。其中 A A A m × n m\times n m×n 的矩阵,而 x \mathbf{x} x b \mathbf{b} b n n n 维向量。

  2. 求解方法
           同上 … \dots

  3. 性质
    A ( u + v ) = A u + A v A ( c u ) = c A u A(\mathbf{u}+\mathbf{v})=A\mathbf{u}+A\mathbf{v}\\ A(c\mathbf{u})=cA\mathbf{u} A(u+v)=Au+AvA(cu)=cAu
           其中 c c c 是标量, A A A m × n m\times n m×n 矩阵, u \mathbf{u} u v \mathbf{v} v R n \mathbb{R}^n Rn 中的向量。

1.5 参考

[1] Lay.线性代数及其应用

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值