Chapter 1 (Linear Equations in Linear Algebra): The matrix equation Ax=b

本文为《Linear algebra and its applications》的读书笔记

Definition of A x A\boldsymbol x Ax

在这里插入图片描述

A x A\boldsymbol x Ax 被定义为了 A A A 的各个列的线性组合


EXAMPLE 1

在这里插入图片描述

The matrix equation (矩阵方程)

  • The equation A x = b A\boldsymbol x = \boldsymbol b Ax=b is called a matrix equation.
    • For example, the system
      在这里插入图片描述is equivalent to在这里插入图片描述在这里插入图片描述

Notice how the matrix A A A is just the matrix of coefficients of the system.


THEOREM3

在这里插入图片描述

  • Theorem 3 provides a powerful tool for gaining insight into problems in linear algebra, because a system of linear equations may now be viewed in three different but equivalent ways:
    • as a matrix equation
    • as a vector equation
    • or as a system of linear equations.
  • In any case, the matrix equation (4), the vector equation (5), and the system of equations are all solved in the same way—by row reducing the augmented matrix (6).

Existence of Solutions

  • The equation A x = b A\boldsymbol x = \boldsymbol b Ax=b has a solution if and only if b \boldsymbol b b is a linear combination of the columns of A A A.

EXAMPLE 3

Let A = [ 1 3 4   − 4 2 − 6   − 3 − 2 − 7   ] A=\begin{bmatrix}1&3&4\ \\-4&2&-6\ \\-3&-2&-7\ \end{bmatrix} A=1433224 6 7 , and b = [ b 1 b 2 b 3 ] \boldsymbol b=\begin{bmatrix}b_1\\b_2\\b_3\end{bmatrix} b=b1b2b3. Is the equation A x = b A\boldsymbol x = \boldsymbol b Ax=b consistent for all possible b 1 , b 2 , b 3 b_1, b_2,b_3 b1,b2,b3 ?

SOLUTION

  • The equation A x = b A\boldsymbol x = \boldsymbol b Ax=b is not consistent for every b \boldsymbol b b
    在这里插入图片描述
  • The reduced matrix in Example 3 provides a description of all b \boldsymbol b b for which the equation A x = b A\boldsymbol x = \boldsymbol b Ax=b is consistent: The entries in b \boldsymbol b b must satisfy
    − b 1 − 1 2 b 2 + b 3 = 0 -b_1-\frac{1}{2}b_2+b_3=0 b121b2+b3=0This is the equation of a plane through the origin in R 3 \mathbb{R}^3 R3. The plane is the set of all linear combinations of the three columns of A A A.
    在这里插入图片描述

  • In the next theorem, the sentence “The columns of A A A span R m \mathbb{R}^m Rm”( A A A 的列生成 R m \mathbb{R}^m Rm) means that every b \boldsymbol b b in R m \mathbb{R}^m Rm is a linear combination of the columns of A A A.
  • In general, a set of vectors { v 1 , . . . , v p } \{\boldsymbol v_1,...,\boldsymbol v_p\} {v1,...,vp} in R m \mathbb{R}^m Rm spans (or generates) R m \mathbb{R}^m Rm if Span { v 1 , . . . , v p } \{\boldsymbol v_1,...,\boldsymbol v_p\} {v1,...,vp}= R m \mathbb{R}^m Rm

在这里插入图片描述

W a r n i n g Warning Warning: Theorem 4 is about a coefficient matrix, not an augmented matrix. If an augmented matrix [ A     b ] [A\ \ \ \boldsymbol b] [A   b] has a pivot position in every row, then the equation A x = b A\boldsymbol x = \boldsymbol b Ax=b may or may not be consistent.

  • 也就是说,如果 A A A 对应的阶梯矩阵每一行都不为零行,则 A A A 的列生成 R m \mathbb{R}^m Rm
    • 推论:若 m × n m\times n m×n 的矩阵 A A A 的行数多于列数,则 A A A 的列不可能生成 R m \mathbb{R}^m Rm (最多有 n n n 个主元,无法使每行都有主元)

EXAMPLE
Let v 1 = [ 1   0   − 1   0   ] \boldsymbol v_1=\begin{bmatrix}1\ \\0\ \\-1\ \\0\ \end{bmatrix} v1=1 0 1 0 , v 2 = [ 0   − 1   0   1   ] \boldsymbol v_2=\begin{bmatrix}0\ \\-1\ \\0\ \\1\ \end{bmatrix} v2=0 1 0 1 , v 1 = [ 1   0   0   − 1   ] \boldsymbol v_1=\begin{bmatrix}1\ \\0\ \\0\ \\-1\ \end{bmatrix} v1=1 0 0 1 , find a specific vector in R 4 \mathbb{R^4} R4 that is not in Span{ v 1 , v 2 , v 3 \boldsymbol v_1, \boldsymbol v_2, \boldsymbol v_3 v1,v2,v3}.

SOLUTION
在这里插入图片描述

  • Take b \boldsymbol b b = ( 1 , 1 , 0 , 0 ) (1, 1, 0, 0) (1,1,0,0), for example, or any other choice of b 1 , . . . , b 4 b_1, . . . , b_4 b1,...,b4 whose sum is not zero.

Computation of A x A\boldsymbol x Ax

EXAMPLE 4
Compute A x A\boldsymbol x Ax, where A = [ 2 3 4   − 1 5 − 3   6 2 − 8   ] A=\begin{bmatrix}2&3&4\ \\-1&5&-3\ \\6&2&-8\ \end{bmatrix} A=2163524 3 8  and x = [ x 1   x 2   x 3   ] \boldsymbol x=\begin{bmatrix}x_1\ \\x_2\ \\x_3\ \end{bmatrix} x=x1 x2 x3 

SOLUTION

  • From the definition,
    在这里插入图片描述
  • The first entry in the product A x A\boldsymbol x Ax is a sum of products (sometimes called a dot product (点积)), using the first row of A A A and the entries in x \boldsymbol x x. That is,
    在这里插入图片描述This matrix shows how to compute the first entry in A x A\boldsymbol x Ax directly, without writing down all the calculations

Row–Vector Rule for Computing A x A\boldsymbol x Ax

  • If the product A x A\boldsymbol x Ax is defined, then the i i ith entry in A x A\boldsymbol x Ax is the sum of the products of corresponding entries from row i i i of A A A and from the vector x \boldsymbol x x.

EXAMPLE 5

在这里插入图片描述

  • By definition, the matrix in Example 5 with 1’s on the diagonal and 0’s elsewhere is called an identity matrix (单位矩阵) and is denoted by I \boldsymbol I I .
  • The calculation in Example 5 shows that I x = x I\boldsymbol x=\boldsymbol x Ix=x for every x \boldsymbol x x in R 3 \mathbb{R}^3 R3. There is an analogous n × n n\times n n×n identity matrix, sometimes written as I n \boldsymbol I_n In. As in Example 5, I n x = x I_n\boldsymbol x=\boldsymbol x Inx=x for every x \boldsymbol x x in R n \mathbb{R}^n Rn.

Properties of the Matrix–Vector Product A x A\boldsymbol x Ax

矩阵-向量积 A x A\boldsymbol x Ax 的性质

在这里插入图片描述

这两个性质也是线性变换 (linear transformation) 的性质

PROOF

  • For simplicity, take n = 3 n = 3 n=3
    在这里插入图片描述在这里插入图片描述
  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值