pytorch损失函数

1 篇文章 0 订阅
1 篇文章 0 订阅

损失函数在torch.nn中,很多的 loss 函数都有 size_average 和 reduce 两个布尔类型的参数,一般损失函数都是直接计算 batch 的数据,因此返回的 loss 结果都是维度为 (batch_size, ) 的向量。

适用于target和predict维度一致的

L1范数损失 L1Loss

torch.nn.L1Loss(reduction='mean')
参数
reduction-三个值,none: 不使用约简;mean:返回loss和的平均值; sum:返回loss的和。默认:mean。
意义
计算 output 和 target 之差的绝对值。

平滑版L1损失 SmoothL1Loss(Huber 损失函数)

torch.nn.SmoothL1Loss(reduction='mean')
参数
reduction-三个值,none: 不使用约简;mean:返回loss和的平均值; sum:返回loss的和。默认:mean。
意义
误差在 (-1,1) 上是平方损失,其他情况是 L1 损失。

均方误差损失 MSELoss

torch.nn.MSELoss(reduction='mean')
参数
reduction-三个值,none: 不使用约简;mean:返回loss和的平均值; sum:返回loss的和。默认:mean。
意义
计算 output 和 target 之差的均方差。

KL 散度损失 KLDivLoss

torch.nn.KLDivLoss(reduction='mean')
参数
reduction-三个值,none: 不使用约简;mean:返回loss和的平均值; sum:返回loss的和。默认:mean。
意义
计算 input 和 target 之间的 KL 散度。KL 散度可用于衡量不同的连续分布之间的距离, 越相似则越接近零,在连续的输出分布的空间上(离散采样)上进行直接回归时很有效。

二进制交叉熵损失 BCELoss

torch.nn.BCELoss(weight=None, reduction='mean')
参数
weight (Tensor, optional) – 自定义的每个 batch 元素的 loss 的权重. 必须是一个长度为 “nbatch” 的 的 Tensor
pos_weight(Tensor, optional) – 自定义的每个正样本的 loss 的权重. 必须是一个长度 为 “classes” 的 Tensor
意义
二分类任务时的交叉熵计算函数。用于测量重构的误差, 例如自动编码机. 注意目标的值 t[i] 的范围为0到1之间,用的时候需要在该层前面加上 Sigmoid 函数。

BCEWithLogitsLoss

torch.nn.BCEWithLogitsLoss(weight=None, reduction='mean', pos_weight=None)
参数
weight (Tensor, optional) – 自定义的每个 batch 元素的 loss 的权重. 必须是一个长度为 “nbatch” 的 的 Tensor
pos_weight(Tensor, optional) – 自定义的每个正样本的 loss 的权重. 必须是一个长度 为 “classes” 的 Tensor
意义
BCEWithLogitsLoss损失函数把 Sigmoid 层集成到了 BCELoss 类中. 该版比用一个简单的 Sigmoid 层和 BCELoss 在数值上更稳定, 因为把这两个操作合并为一个层之后, 可以利用 log-sum-exp 的 技巧来实现数值稳定。

HingeEmbeddingLoss

torch.nn.HingeEmbeddingLoss(margin=1.0,  reduction='mean')
参数
margin:默认值1
意义
通常被用于最大间隔算法(maximum-margin),而最大间隔算法又是SVM(支持向量机support vector machines)用到的重要算法(注意:SVM的学习算法有两种解释:1. 间隔最大化与拉格朗日对偶;2. Hinge Loss)。

二分类的logistic损失SoftMarginLoss

torch.nn.SoftMarginLoss(reduction='mean')

函数公式

多标签 one-versus-all 损失 MultiLabelSoftMarginLoss

torch.nn.MultiLabelSoftMarginLoss(weight=None, reduction='mean')
criterion
基于最大熵,优化输入张量x和多目标张量y(N, C)之间一对多损失

在这里插入图片描述

PoissonNLLLoss

torch.nn.PoissonNLLLoss(log_input=True, full=False,  eps=1e-08,  reduction='mean')
参数
log_input (bool, optional) – 如果设置为 True , loss 将会按照公 式 exp(input) - target * input 来计算, 如果设置为 False , loss 将会按照 input - target * log(input+eps) 计算.
full (bool, optional) – 是否计算全部的 loss, i. e. 加上 Stirling 近似项 target * log(target) - target + 0.5 * log(2 * pi * target).
eps (float, optional) – 默认值: 1e-8
意义
目标值为泊松分布的负对数似然损失。

其他

交叉熵损失 CrossEntropyLoss

torch.nn.CrossEntropyLoss(weight=None, ignore_index=-100, reduction='mean')
参数
weight (Tensor, optional) – 自定义的每个类别的权重. 必须是一个长度为 C 的 Tensor
ignore_index (int, optional) – 设置一个目标值, 该目标值会被忽略, 从而不会影响到 输入的梯度。
reduction-三个值,none: 不使用约简;mean:返回loss和的平均值; sum:返回loss的和。默认:mean。
意义
当训练有 C 个类别的分类问题时很有效. 可选参数 weight 必须是一个1维 Tensor, 权重将被分配给各个类别. 对于不平衡的训练集非常有效。在多分类任务中,经常采用 softmax 激活函数+交叉熵损失函数,因为交叉熵描述了两个概率分布的差异,然而神经网络输出的是向量,并不是概率分布的形式。所以需要 softmax激活函数将一个向量进行“归一化”成概率分布的形式,再采用交叉熵损失函数计算 loss。
当使用交叉熵作为损失函数时,通常使用困惑度perplexity来评价语言模型的好坏,困惑度是对交叉熵损失函数做指数运算后得到的值。特别的,最佳情况下,模型总是把标签类别的概率预测为1,此时困惑度为1;最坏情况下,模型总是把标签类别的概率预测为0,此时困惑度为正无穷;基线情况下,模型总是预测所有类别的概率相同,此时困惑度为类别个数。显然,任何一个有效模型的困惑度必须小于类别个数。计算方式:
loss = nn.CrossEntropyLoss()
for epoch in range(epochs):
    ...
    for X, y in data_iter:
        ...
        l = loss(output, target.view(-1))
        ...
        l_sum += loss.item() * target.view(-1).shape[0]
        n += target.view(-1).shape[0]
    try:
        perplexity = math.exp(l_sum / n)
    except OverflowError:
        perplexity = float('inf')
    ...

MarginRankingLoss

torch.nn.MarginRankingLoss(margin=0.0, reduction='mean')
参数
margin:默认值0
意义
评价相似度的损失,这里的三个都是标量,y 只能取 1 或者 -1,取 1 时表示 x1 比 x2 要大;反之 x2 要大。参数 margin 表示两个向量至少要相聚 margin 的大小,否则 loss 非负。默认 margin 取零。

在这里插入图片描述

多标签分类损失 MultiLabelMarginLoss

torch.nn.MultiLabelMarginLoss(reduction='mean')
参数
margin:默认值0
意义
多类别(multi-class)多分类(multi-classification)的 Hinge 损失,是上面 MultiMarginLoss 在多类别上的拓展。同时限定 p = 1,margin = 1。

cosine 损失 CosineEmbeddingLoss

torch.nn.CosineEmbeddingLoss(margin=0.0, reduction='mean')
参数
margin:默认值0
意义
余弦相似度的损失,目的是让两个向量尽量相近。注意这两个向量都是有梯度的。margin 可以取[-1, 1],但是比较建议取 0-0.5 较好。

多类别分类的hinge损失 MultiMarginLoss

torch.nn.MultiMarginLoss(p=1, margin=1.0, weight=None,  reduction='mean')
参数
margin:默认值1,p=1或者2 默认值:1

在这里插入图片描述

三元组损失 TripletMarginLoss

torch.nn.TripletMarginLoss(margin=1.0, p=2.0, eps=1e-06, swap=False, reduction='mean')
criterion
3元损失,度量输入x1,x2,x3之间的相似度
意义
triplet:a(anchor),p(positive),n(negative)人脸验证中常常用到,它的目的就是让p与a尽量相似(同一个人不同样本),而n与a尽量不相似(不同人的样本)。

在这里插入图片描述

连接时序分类损失 CTCLoss

torch.nn.CTCLoss(blank=0, reduction='mean')
参数
reduction-三个值,none: 不使用约简;mean:返回loss和的平均值; sum:返回loss的和。默认:mean。

负对数似然损失 NLLLoss

torch.nn.NLLLoss(weight=None, ignore_index=-100,  reduction='mean')
参数
weight (Tensor, optional) – 自定义的每个类别的权重. 必须是一个长度为 C 的 Tensor
ignore_index (int, optional) – 设置一个目标值, 该目标值会被忽略, 从而不会影响到输入的梯度
意义
负对数似然损失. 用于训练 C 个类别的分类问题。用于训练分类问题中,可设置1D Tensor的weight参数,为每个类分配权重,当训练不平衡样本时,尤其有用。

NLLLoss2d

torch.nn.NLLLoss2d(weight=None, ignore_index=-100, reduction='mean')
参数
weight (Tensor, optional) – 自定义的每个类别的权重. 必须是一个长度为 C 的 Tensor
reduction-三个值,none: 不使用约简;mean:返回loss和的平均值; sum:返回loss的和。默认:mean。
意义
对于图片输入的负对数似然损失. 它计算每个像素的负对数似然损失。

参考

pytorch学习之十九种损失函数
pytorch loss function 总结
Pytorch模型训练(4) - Loss Function

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值