机器学习:训练集与测试集分割train_test_split

1 引言

在使用机器学习训练模型算法的过程中,为提高模型的泛化能力、防止过拟合等目的,需要将整体数据划分为训练集和测试集两部分,训练集用于模型训练,测试集用于模型的验证。此时,使用train_test_split函数可便捷高效的实现数据训练集与测试集的划分。

2 train_test_split介绍

train_test_split函数来自scikit-learn库(也称为sklearn),安装命令:

pip install sklearn

函数的导入:

from sklearn.model_selection import train_test_split

2.1 函数定义

def train_test_split(*arrays,test_size=None,train_size=None,random_state=None,
    shuffle=True,stratify=None,):

2.2 参数说明

  • *arrays: 单个数组或元组,表示需要划分的数据集。如果传入多个数组,则必须保证每个数组的第一维大小相同。
  • test_size: 测试集的大小(占总数据集的比例,值为0.0-1.0,表示测试集占总样本比例)。默认值为0.25,即将传入数据的25%作为测试集。
  • train_size: 训练集的大小(占总数据集的比例,值为0.0-1.0,表示训练集占总样本比例)。默认值为None,此时和test_size互补,即训练集的大小为(1-test_size)。
  • random_state: 随机数种子。可以设置一个整数,用于复现结果。默认为None。其实是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。(比如每次都填1,其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。)
  • shuffle: 是否随机打乱数据。默认为True。
  • stratify: 可选参数,用于进行分层抽样。传入标签数组,保证划分后的训练集和测试集中各类别样本比例与原始数据集相同。默认为None,即普通的随机划分。(此参数作用是保持测试集与整个数据集里的数据分类比例一致,比如有1000个数据,800个属于A类,200个属于B类。设置stratify = y_lable,test_size=0.25,split之后数据组成如下:training: 750个数据,其中600个属于A类,150个属于B类;testing: 250个数据,其中200个属于A类,50个属于B类)

2.3 返回值

该函数返回一个元组(X_train, X_test, y_train, y_test),其中X_train表示训练集的特征数据,X_test表示测试集的特征数据,y_train表示训练集的标签数据,y_test表示测试集的标签数据。

2.4 注意事项

  • test_sizetrain_size必须至少有一个设置为非None
  • 当传入多个数组时,请确保每个数组的第一维大小相同。
  • random_state要设置一个整数值,从而保证每次获取相同的训练集和测试集
  • 当使用分层抽样时,请确保传入的标签数组是正确的。

3 train_test_split使用

3.1 使用train_test_split分割Iris数据

from sklearn import datasets
from sklearn.model_selection import train_test_split

# 加载Iris数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=1)
train_dataset = TensorDataset(torch.from_numpy(X_train), torch.from_numpy(y_train))
test_dataset = TensorDataset(torch.from_numpy(X_test), torch.from_numpy(y_test ))

batch_size = 32
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)

print(X_train)
print(X_test)

结果展示:

X_train=[[6.5 2.8 4.6 1.5]
 [6.7 2.5 5.8 1.8]
 [6.8 3.  5.5 2.1]
 [5.1 3.5 1.4 0.3]
 [6.  2.2 5.  1.5]
 ......此处数据省略
 [4.9 3.6 1.4 0.1]]
X_test=[[5.8 4.  1.2 0.2]
 [5.1 2.5 3.  1.1]
 [6.6 3.  4.4 1.4]
 [5.4 3.9 1.3 0.4]
 [7.9 3.8 6.4 2. ]
 ......此处数据省略
 [5.2 3.4 1.4 0.2]]

3.2 使用train_test_split分割水果识别数据

在/opt/dataset下存放着水果图片的分类数据文件夹(文件夹名称为标签),每个文件夹下存储着多张对应标签的水果图片,如下所示:

以apple文件夹为例,图片内容如下:

数据加载和分割数据集的代码如下:

from torchvision.datasets import ImageFolder
from sklearn.model_selection import train_test_split

# 图像变换
transform = transforms.Compose([transforms.Resize((224, 224)),
                                transforms.ToTensor(),
                                transforms.Normalize(
                                     mean=[0.5, 0.5, 0.5],
                                     std=[0.5, 0.5, 0.5]
                                ), ])
# 加载数据集
dataset = ImageFolder('/opt/dataset', transform=transform)

# 划分训练集与测试集
train_dataset, valid_dataset = train_test_split(dataset, test_size=0.2, random_state=10)

batch_size = 64
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, drop_last=True)
test_loader = DataLoader(dataset=valid_dataset, batch_size=batch_size, shuffle=True, drop_last=True)

4 sklearn介绍

train_test_split()是sklearn
.cross_validation模块中用来随机划分训练集和测试集。

sklearn,全称scikit-learn,是python中的机器学习库,建立在numpy、scipy、matplotlib等数据科学包的基础之上,涵盖了机器学习中的样例数据、数据预处理、模型验证、特征选择、分类、回归、聚类、降维等几乎所有环节,功能十分强大。与深度学习库存在pytorch、TensorFlow等多种框架可选不同,sklearn是python中传统机器学习的首选库,不存在其他竞争者。

sklearn为初学者提供了一些经典数据集,通过这些数据集可快速搭建机器学习任务、对比模型性能。数据集主要围绕分类和回归两类经典任务,对于不同需求,常用数据集简介如下:

  • load_breast_cancer:乳腺癌数据集,特征为连续数值变量,标签为0或1的二分类任务

  • load_iris:经典鸢尾花数据集,特征为连续数值变量,标签为0/1/2的三分类任务,且各类样本数量均衡,均为50个

  • load_wine:红酒数据集,与鸢尾花数据集特点类似,也是用于连续特征的3分类任务,不同之处在于各类样本数量轻微不均衡

  • load_digits:小型手写数字数据集(之所以称为小型,是因为还有大型的手写数字数据集mnist),包含0-9共10种标签,各类样本均衡,与前面3个数据集最大不同在于特征也是离散数值0—16之间,例如在进行多项式朴素贝叶斯模型、ID3树模型时,可用该数据集

  • load_boston:波士顿房价数据集,连续特征拟合房价,适用于回归任务

值得指出,sklearn除了load系列经典数据集外,还支持自定义数据集make系列和下载数据集fetch系列(load系列为安装sklearn库时自带,而fetch则需额外下载),这为更多的学习任务场景提供了便利。

sklearn中的各模型均有规范的数据输入输出格式,一般以np.array和pd.dataframe为标准格式,所以一些字符串的离散标签是不能直接用于模型训练的;同时为了加快模型训练速度和保证训练精度,往往还需对数据进行预处理,例如在以距离作为度量进行训练时则必须考虑去量纲化的问题。为此,sklearn提供了一些常用的数据预处理功能,常用的包括:

  • MinMaxScaler:归一化去量纲处理,适用于数据有明显的上下限,不会存在严重的异常值,例如考试得分0-100之间的数据可首选归一化处理

  • StandardScaler:标准化去量纲处理,适用于可能存在极大或极小的异常值,此时用MinMaxScaler时,可能因单个异常点而将其他数值变换的过于集中,而用标准正态分布去量纲则可有效避免这一问题

  • Binarizer:二值化处理,适用于将连续变量离散化

  • OneHotEncoder:独热编码,一种经典的编码方式,适用于离散标签间不存在明确的大小相对关系时。例如对于民族特征进行编码时,若将其编码为0-55的数值,则对于以距离作为度量的模型则意味着民族之间存在"大小"和"远近"关系,而用独热编码则将每个民族转换为一个由1个"1"和55个"0"组成的向量。弊端就是当分类标签过多时,容易带来维度灾难,而特征又过于稀疏

  • Ordinary:数值编码,适用于某些标签编码为数值后不影响模型理解和训练时。例如,当民族为待分类标签时,则可将其简单编码为0-55之间的数字

<think>好的,用户想要寻找一个病虫害数据集,并且了解如何将其划分训练集、验证集测试集。我需要先回顾一下相关的引用内容,看看有没有可用的数据集信息。引用1提到了苹果叶片的病虫害数据集,引用2是关于玉米病虫害的数据集,而引用3则是棉花病虫害的数据集。这三个数据集应该可以满足用户的需求,所以首先需要将这些数据集的信息整理出来,告诉用户有哪些可用的资源。 接下来是关于数据集的划分方法。引用1中详细说明了训练集、验证集测试集的作用,比如训练集用于训练模型,验证集调整参数防止过拟合,测试集评估性能。同时,划分时要保持数据集的多样性代表性,并根据实际需求调整比例。引用3还提到附赠了划分脚本,用户可以直接使用。这些信息需要整合到回答中,给出具体的划分步骤注意事项。 用户可能对划分比例不太清楚,所以需要给出常见的比例,比如6:2:2或者7:2:1,并解释不同情况下的调整策略。比如小数据集可能需要更多的验证集,或者类别不均衡时需要分层抽样。此外,还要提到使用工具如scikit-learn的train_test_split或者脚本来自动化划分,避免手动操作带来的偏差。 另外,用户可能关心如何确保数据划分的有效性,比如随机打乱数据、分层抽样保持类别平衡,以及数据增强的应用场景。需要强调这些步骤的重要性,确保模型训练的可靠性泛化能力。 最后,需要检查是否有遗漏的信息,比如数据集的下载链接或者具体的使用方法。引用中的数据集虽然提到了名称部分特点,但用户可能需要进一步查找这些资源的具体获取途径,可能需要指导用户如何搜索或者提供相关的资源链接,但根据引用内容,可能没有直接链接,所以建议用户根据数据集名称进行搜索,或者访问相关平台获取。 总结回答的结构应该先推荐数据集,再分步骤说明划分方法,最后给出注意事项工具建议,确保用户能够按步骤操作,同时理解每个步骤的意义。还要注意使用正确的中文表达LaTeX格式,但根据用户的问题,可能不需要数学公式,但需要保持回答的结构清晰,符合系统指令的要求。</think>根据您的需求,推荐以下病虫害数据集资源划分方法: ### 一、病虫害数据集推荐 1. **农作物苹果叶片病虫害数据集** 包含训练集、验证集、测试集的规范划分,注重数据多样性代表性[^1]。 2. **玉米病虫害数据集** - 玉米病害检测数据集(4类,约9000张图片) - 玉米虫害分类数据集(13类,YOLO系列通用格式)[^2] 3. **棉花病虫害检测数据集** - 含VOC、COCO、YOLO三种格式标签 - 附赠数据集划分脚本,支持自定义划分比例[^3] --- ### 二、数据集划分方法 #### 1. **划分原则** - **训练集**(60%-80%):用于模型参数学习 - **验证集**(10%-20%):用于超参数调优过拟合监控 - **测试集**(10%-20%):用于最终性能评估 *建议小数据集增大验证集比例(如7:2:1)* #### 2. **具体步骤** **步骤1:数据预处理** - 随机打乱数据顺序 - 分层抽样保持类别平衡(如玉米病害13类的分布) **步骤2:比例划分** ```python from sklearn.model_selection import train_test_split # 首次拆分训练集+临时集(如8:2) X_train, X_temp, y_train, y_temp = train_test_split(data, labels, test_size=0.2, stratify=labels) # 二次拆分验证集+测试集(各占临时集的50%) X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, stratify=y_temp) ``` **步骤3:格式转换(可选)** - YOLO格式数据集需生成`train.txt`/`val.txt`/`test.txt`索引文件 #### 3. **工具推荐** - **脚本工具**:棉花数据集提供的划分脚本 - **深度学习框架**:PyTorch的`SubsetRandomSampler`、TensorFlow的`tf.data.Dataset` --- ### 三、关键注意事项 1. **数据代表性** - 确保每个子集包含所有类别样本(如苹果叶片的健康/病态样本) - 空间分布一致(同一地块样本不应全分到同一子集) 2. **特殊场景处理** - 时间序列数据需按时间顺序划分 - 小样本数据可使用交叉验证 3. **数据增强策略** ```python # 示例:对训练集应用增强(测试集保持原始状态) train_transform = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.ColorJitter() ]) ``` --- ### 四、扩展建议 1. 对玉米虫害数据集进行细粒度划分时,可先按虫害类别分组再抽样 2. 使用K折交叉验证(K=5)优化小数据集的利用率 3. 在YOLO格式数据划分后,需同步更新`data.yaml`中的路径配置 如需具体数据集下载链接或脚本实现细节,可进一步说明需求方向。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智慧医疗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值