大语言模型LLM微调技术:P-Tuning

文章探讨了从Bert时代的预训练模型微调转向Prompt新范式,特别是P-tuning及其两个版本(P-tuningv1和v2)。P-tuningv2通过DeepPromptEncoding和Multi-taskLearning优化,使得模型在不同规模和复杂任务上表现优秀,且在大模型如ChatGLM-6B上实现了高效微调。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 引言

Bert时代,我们常做预训练模型微调(Fine-tuning),即根据不同下游任务,引入各种辅助任务loss和垂直领域数据,将其添加到预训练模型中,以便让模型更加适配下游任务的方式。每个下游任务都存下整个预训练模型的副本,并且推理必须在单独的批次中执行。

那么能不能将所有自然语言处理的任务转换为语言模型任务?就是所有任务都可以被统一建模,任务描述与任务输入视为语言模型的历史上下文,而输出则为语言模型需要预测的未来信息。

因此,Prompt新范式被提出,无需要fine-tune,让预训练模型直接适应下游任务。Prompt方式更加依赖先验,而 fine-tuning 更加依赖后验。

2 P-tuning

P-tuning有两个版本:

  • 论文GPT Understands, Too[2]中的Prompt tuning,在本文行文过程中称为P-tuning v1

        GitHub 代码:https://github.com/THUDM/P-tuning

  • P-Tuning v2在论文《P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks》中提出。

        GitHub代码:https://github.com/THUDM/P-tuning-v2

2.1 prefix-tuning

如果分析 P-tuning,那不得不提到prefix-tuning技术,相对于fine-tuning,在调节模型的过程中只优化一小段可学习的continuous task-specific vector(prefix)而不是整个模型的参数。

对于不同的任务和模型结构需要不同的prefix:

  • 在autoregressive LM 前添加prefix获得:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智慧医疗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值