python中的numpy数组索引切片用法1(随手记)

NumPy 数组支持所谓的“花式索引”(Fancy Indexing),这意味着您可以使用整数列表或 NumPy 整数数组作为索引来选择数组中的元素。这种索引方式允许您从数组中选择一个不连续的元素集。

以下是一些使用列表索引 NumPy 数组的示例:

  1. 使用整数列表作为索引

    import numpy as np

    arr = np.array([10, 20, 30, 40, 50])

    indices = [1, 3, 4] # 选择索引 1, 3 和 4 的元素

    print(arr[indices]) # 输出: [20, 40, 50]

  2. 使用布尔数组进行索引

    arr = np.array([10, 20, 30, 40, 50])

    mask = [True, False, True, False, True] # 选择 True 对应的元素

    print(arr[mask]) # 输出: [10, 30, 50]

  3. 结合条件进行索引

    arr = np.array([10, 20, 30, 40, 50]) # 选择大于 25 的元素 
    print(arr[arr > 25]) # 输出: [30, 40, 50] 

这些花式索引技术使得 NumPy 数组在数据选择和处理方面非常灵活和强大。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值