Numpy中高维axis的操作个人理解

本文详细解析了Numpy中高维数组在sum和sort操作时,对不同axis的理解。针对三维数组,解释了axis=0、1、2时的求和与排序过程,帮助理解轴向操作如何影响元素间的加法与排序,以及如何根据需求选择合适的axis值。
摘要由CSDN通过智能技术生成

Numpy中维数

numpy能够实现高维矩阵的运算,但是当维数超过3后,就能难理解根据某个轴进行运算的操作过程(太抽象了)。二维矩阵,就是有行和列,axis=0,对应是行,axis=1,对应是列,通过2个下标确定具体某个元素的位置,三维则需要三个下标确定某个元素的位置。

Numpy维度的直观理解

对应三维矩阵,那么里面的具体的元素是被三个[]所包围的,最外层[]对应于axis=0,即第一维,次外层[]对应于axis=1,即第二维,最里层的[]对应axis=2,即第三维。
在这里插入图片描述
多少个维度,就对应有多少个[]。

三维数组,sum(axis=i)的理解。

二维数组的对固定某个轴进行加减排序不难理解,但是达到三维及以上就比较难直观理解了。这里以三维数组为例,更高维度情况类似。
np.sum(axis=0)
这是按照第1维进行数组的求和。
在这里插入图片描述
对于axis=0,就对应于第一个[],那么从这个[]往内看,子单位是两个二维数组,sum(axi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值