Python的numpy中axis=0、axis=1、axis=2解释

参考:Python:一文让你彻底理解numpy中axis=-1/0/1/2… [实例讲解:np.argmax(axis= -1 0 1 2) np.sum(aixs= -1 0 1 2)]


0. 前置知识

0.1 axis

axis翻译过来就是轴的意思。

numpy数组中:

  • 一维数组拥有一个轴:axis=0;
  • 二维数组拥有两个轴:axis=0,axis=1;
  • 三维数组拥有三个轴:axis=0,axis=1,axis=2。
  • 四维数组拥有三个轴:axis=0,axis=1,axis=2,axis=3。

0.2 数组维度

可以从左至右计算数组的方括号数目,一个方括号是一维数组,两个方括号是二维数组,三个方括号是三维数组。
如: [1, 2, 3]是一维数组、[[1, 2, 3], [4, 5, 6]]是二维数组、[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]] 是三维数组。

0.3 axis(轴)与数组括号的对应关系

numpy数组都有[]标记,其对应关系:axis=0对应最外层的[],axis=1对应第二外层的[],…,axis=n对应第n外层的[]。以三维数组为例,两者关系如下表所示:

axis[ ]
axis = 0[ [ [ ] ] ]
axis = 1[ [ [ ] ] ]
axis = 2[ [ [ ] ] ]

1. 如何理解对numpy数组的axis(轴)的操作

这里使用了博主西北种田文的方法“括号最大块法”。

博客链接为:Python:一文让你彻底理解numpy中axis=-1/0/1/2… [实例讲解:np.argmax(axis= -1 0 1 2) np.sum(aixs= -1 0 1 2)]

括号最大块法有且仅有两步:

  • 第一步:由axis = value,找对应[]里的最大单位块。(np.sum()拆掉此层[],np.argmax()不拆此层[])

  • 第二步:对单位块进行计算,这里又分为两种情况:

    • 当单位块是数值时,直接计算
    • 当单位块是数组时,对应下标元素进行计算

接下来对上述方法进行补充说明:

首先,最大单位块就是某层[]里包裹的最大结构块。比如:

  • [1,2,3][]里最大的单位块是数值 1 2 3。
  • [[1,2],[3,4]]:最外层[]里最大单位块是[1,2][3,4],第二层[]里最大单位块是1,2 和 3,4。
  • [[[1,2],[3,4]],[[5,6],[7,8]]]:最外层[]里最大单位块是[[1,2],[3,4]][[5,6],[7,8]],第二层[]里最大单位块是[1,2][3,4] 还有 [5,6][7,8],第三层[]里最大单位块是1,2 和 3,4 和 5,6 和 7,8。

其次,最大单位块数组时,对应下标元素的计算方法为:

  • 对于numpy二维数组[[1,2],[3,4]]
    axis=0,最外层[],有一对,其里包含两个最大块[1,2][3,4],这两个块1和3、2和4即为对应。
    axis=1,第二层[],有两对,两个[]都为数值,直接计算。
  • 对于numpy三维数组[[[1, 2],[3, 4]], [[5, 6],[7, 8]]]
    axis=0,最外层[],有一对,其里包含两个最大块[[1, 2],[3, 4]]、 [[5, 6],[7, 8]],这两个块1和5、2和6、3和7、4和8即为对应。
    axis=1,第二层[],有两对,第一个[]最大块为:[1, 2][3, 4],其中1和3、2和4对应;第二个[]最大块为:[5, 6][7, 8],其中5和7、6和8对应。
    axis=2,第三层[],有四对,4个[]内都是数值,直接计算。

2. 实例

2.1 实例1:np.sum(axis=-1/0/1/2)

一维数组

axis=0

>>> import numpy as np
>>> arr = np.array([1, 2, 3])
>>> arr.sum(axis = 0)
6

第一步:axis=0对应最外层[],其内最大单位块为:1,2,3,并去掉[]
第二步:单位块是数值,直接计算:1+2+3=6

axis=1

>>> arr = np.array([1, 2, 3])
>>> arr.sum(axis = 1)  # 越界使用,报错
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "D:\Anaconda3\lib\site-packages\numpy\core\_methods.py", line 38, in _sum
    return umr_sum(a, axis, dtype, out, keepdims, initial, where)
numpy.AxisError: axis 1 is out of bounds for array of dimension 1

由此可知,使用axis时,不要越界,即:N维数组,最大能使用axis=N-1

二维数组

axis=0

>>> arr = np.array([[1, 2], [3, 4]])
>>> arr.sum(axis = 0)
array([4, 6])

第一步:axis=0对应最外层[],其内最大单位块为:[1,2] 和 [3,4],并去掉最外层[]
第二步:单位块是数组,两者对应下标元素进行计算,即:[1+3,2+4]=[4,6]

axis=1

>>> arr = np.array([[1, 2], [3, 4]])
>>> arr.sum(axis = 1)
array([3, 7])

第一步:axis=1对应第二层[],其内最大单位块为:第一[]内: 1,2;第二[]内: 3,4,并去掉第二层[]
第二步:单位块是数值,直接进行计算,即:[1+2,3+4]=[3,7]

三维数组

axis=0

>>> arr = np.array([[[1, 2],[3, 4]], [[5, 6],[7, 8]]])
>>> arr
array([[[1, 2],
        [3, 4]],

       [[5, 6],
        [7, 8]]])
>>> arr.sum(axis=0)
array([[ 6,  8],
       [10, 12]])

第一步:axis=0对应最外层[],其内最大单位块为:[[1, 2],[3, 4]] 和 [[5, 6],[7, 8]],并去掉最外层[]
第二步:单位块是数组,两者对应下标元素进行计算,即:[[1, 2],[3, 4]] + [[5, 6],[7, 8]] = [[1+5,2+6],[3+7,4+8]] = [[6,8], [10,12]]

axis=1

>>> arr = np.array([[[1, 2],[3, 4]], [[5, 6],[7, 8]]])
>>> arr.sum(axis=1)
array([[ 4,  6],
       [12, 14]])

第一步:axis=1对应第二层[],其内最大单位块为:第一个[]: [1, 2]和[3, 4];第二个[]: [5, 6]和[7, 8],并去掉第二层[]
第二步:单位块是数组,两者对应下标元素进行计算,即:第一个[]内:[1+3,2+4],第二个[]内:[5+7,6+8],即:[[1+3,2+4],[5+7, 6+8]] = [[4,6],[12,14]]

axis=2

>>> arr = np.array([[[1, 2],[3, 4]], [[5, 6],[7, 8]]])
>>> arr.sum(axis=2)
array([[ 3,  7],
       [11, 15]])

第一步:axis=1对应第三层[],其内最大单位块为:第一个[]:1,2;第二个[]:3,4;第三个[]:5,6;第四个[]:7,8,并去掉第三层[]
第二步:单位块是数值,直接进行计算,即:[[1+2,3+4],[5+6,7+8]] = [[3,7],[11,15]]

axis=-1

>>> arr = np.array([[[1, 2],[3, 4]], [[5, 6],[7, 8]]])
>>> arr.sum(axis=-1)
array([[ 3,  7],
       [11, 15]])

axis=-1,表示在当前数组最后一维度操作,三维数组中axis=0/1/2,那么axis=-1即等价于axis=2,所以其结果与axis=2相同!

2.2 实例2:np.argmax(axis=-1/0/1/2)

np.argmax():取数组中元素最大值的下标值
np.argmax()中axis=0/1/2…原理与np.sum()中类似,只是不用“拆括号”了!

一维数组

>>> import numpy as np
>>> arr = np.array([3, 4, 6, 9, 1, 2])
>>> print(np.argmax(arr)) # 默认axis=0
3
>>> print(np.argmax(arr, axis=0))
3

二维数组

axis=0

>>> arr = np.array([[3, 6, 6, 2], [4, 7, 11, 2], [5, 9, 1, 3]])
>>> arr
array([[ 3,  6,  6,  2],
       [ 4,  7, 11,  2],
       [ 5,  9,  1,  3]])
>>> np.argmax(arr, axis=0)
array([2, 2, 1, 2], dtype=int64)
>>> print(np.argmax(arr, axis=0))
[2 2 1 2]

第一步:axis=0对应最外层[],其内最大单位块为:[ 3, 6, 6, 2]、 [ 4, 7, 11, 2]和[ 5, 9, 1, 3]
第二步:单位块是数组,两者对应下标元素进行计算,即:argmax([3,4,5])、argmax([6,7,9])、argmax([6,11,1])、argmax([2,2,3]),得到4个最大值索引值:2、2、1、2,得到索引值数组:[2 2 1 2]

axis=1

>>> arr = np.array([[3, 6, 6, 2], [4, 7, 11, 2], [5, 9, 1, 3]])
>>> arr
array([[ 3,  6,  6,  2],
       [ 4,  7, 11,  2],
       [ 5,  9,  1,  3]])
>>> print(np.argmax(arr, axis=1))
[1 2 1]       

第一步:axis=1对应第二层[],其内最大单位块为:3, 6, 6, 2 和 4, 7, 11, 2 和 5, 9, 1, 3
第二步:单位块是数值,直接进行计算,即:argmax([3,6,6,2])、argmax([4,7,11,2])、argmax([5,9,1,3]),得到3个最大值索引值:1、2、1,得到索引数组:[1 2 1]

三维数组

axis=0

>>> arr = np.array([[[1, 5, 5, 2], [9, -6, 2, 8], [-3, 7, -9, 1]], [[-1, 7, -5, 2], [9, 6, 2, 8], [3, 7, 9, 1]], [[21, 6, -5, 2], [9, 36, 2, 8], [2, 7, 66, 1]]])
>>> arr
array([[[ 1,  5,  5,  2],
        [ 9, -6,  2,  8],
        [-3,  7, -9,  1]],

       [[-1,  7, -5,  2],
        [ 9,  6,  2,  8],
        [ 3,  7,  9,  1]],

       [[21,  6, -5,  2],
        [ 9, 36,  2,  8],
        [ 2,  7, 66,  1]]])
>>> print(np.argmax(arr, axis=0))
[[2 1 0 0]
 [0 2 0 0]
 [1 0 2 0]]

第一步:axis=0对应最外层[],其内最大单位块为:
在这里插入图片描述
第二步:单位块是数组,三者对应下标元素进行计算,如图:
在这里插入图片描述
即:argmax([1,-1,21)、argmax([5,7,6])、argmax([5,-5,-5])、argmax([2,2,2])、argmax([9,9,9])、argmax([-6,6,36])…以此类推,得到索引值数组:
在这里插入图片描述

axis=1

>>> arr
array([[[ 1,  5,  5,  2],
        [ 9, -6,  2,  8],
        [-3,  7, -9,  1]],

       [[-1,  7, -5,  2],
        [ 9,  6,  2,  8],
        [ 3,  7,  9,  1]],

       [[21,  6, -5,  2],
        [ 9, 36,  2,  8],
        [ 2,  7, 66,  1]]])
>>> print(np.argmax(arr, axis=1))
[[1 2 0 1]
 [1 0 2 1]
 [0 1 2 1]]

第一步:axis=1对应第二层[],其内最大单位块为:
第一个[]内最大单位块:
在这里插入图片描述
第二个[]内最大单位块:
在这里插入图片描述
第三个[]内最大单位块:
在这里插入图片描述
第二步:各[]内单位块是数组且都为三块,三者对应下标元素进行计算,即:
第一个[]内,三块对应下标,如图:
在这里插入图片描述
计算:argmax([1,9,-3)、argmax([5,-6,7])、argmax([5,2,-9])、argmax(2,8,1)
以此类推:第二个[]、第三个[],得到索引值数组:
在这里插入图片描述

axis=2

>>> arr
array([[[ 1,  5,  5,  2],
        [ 9, -6,  2,  8],
        [-3,  7, -9,  1]],

       [[-1,  7, -5,  2],
        [ 9,  6,  2,  8],
        [ 3,  7,  9,  1]],

       [[21,  6, -5,  2],
        [ 9, 36,  2,  8],
        [ 2,  7, 66,  1]]])
>>> print(np.argmax(arr, axis=2))
[[1 0 1]
 [1 0 2]
 [0 1 2]]

第一步:axis=2对应第三层[],其内最大单位块为:
1,5,5,2
9,-6,2,8
-3,7,-9,1

-1,7,-5,2
9,6,2,8
3,7,9,1

21,6,-5,2
9,36,2,8
2,7,66,1

第二步:单位块是数值,直接进行计算,即:
argmax([1,5,5,2])
argmax([9,-6,2,8])
argmax([-3,7,-9,1])
argmax([-1,7,-5,2])

以此类推,得到索引数组:
在这里插入图片描述

axis=-1

>>> print(np.argmax(arr, axis=-1))
[[1 0 1]
 [1 0 2]
 [0 1 2]]

axis=-1,表示在当前数组最后一维度操作,三维数组中axis=0/1/2,那么axis=-1即等价于axis=2,所以其结果与axis=2相同!

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吮指原味张

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值