农业与医疗领域的智能技术应用
在当今科技飞速发展的时代,智能技术在农业和医疗领域的应用愈发广泛且深入。这些技术不仅为农业生产带来了更高的效率和产量,也为医疗行业解决了数据处理和信息提取的难题。下面将详细介绍卷积神经网络(CNN)和人工神经网络(ANN)在农业中的应用,以及自然语言处理(NLP)在医疗领域的创新。
农业领域的智能技术应用
卷积神经网络(CNN)在作物疾病分类中的应用
CNN在作物疾病分类中发挥着重要作用,其架构的特征提取涉及多个关键层,具体参数如下表所示:
| 层 | Filters | Kernel size | Input shape | Activation | Pool size | Strides |
| — | — | — | — | — | — | — |
| Layer 1 | 32 | (3, 3) | [64, 64, 3] | Relu | (2, 2) | 2 |
| Layer 2 | 32 | (3, 3) | [64, 64, 3] | Relu | (2, 2) | 2 |
在卷积层,通过特定的卷积核和偏置对输入图像进行处理,数学表示为:
[
M_{f}^{p}=\sum_{i \in M_{i}^{p}} k_{i j}^{p} \times M_{j}^{p}+N_{j}^{p}
]
其中,$p$ 表示第 $p$ 层,$k_{i j}$ 表示卷积核,$N_{j}$ 表示偏置,$M_{j}$ 表示输入映射集。
池化层主要用于提取图像的尖锐和平滑特征,同时减少数据的发散特征和计算量,其输出大小的计算公式为: