直接上题目:
题目描述
棋盘上A点有一个过河卒,需要走到目标B点。卒行走的规则:可以向下、或者向右。同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。
棋盘用坐标表示,A点(0, 0)、B点(n, m)(n, m为不超过20的整数),同样马的位置坐标是需要给出的。
现在要求你计算出卒从A点能够到达B点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步,C≠A且C≠B。
输入
一行四个数据,分别表示B点坐标和马的坐标。
输出
一个数据,表示所有的路径条数。
本题思路:
一道动态规划题
动态规划三件套:
初始化、状态定义、状态转移方程
这题与普通动态规划不同之处只有一个马
需要特殊考虑马,并把马的八个可以跳的位置标记出来,进行特殊判断
还有一个地方
就是第一行和第一列
(浅浅画个图)
这里,第一行和第一列要在正式动态规划之前考虑,除了马能跳到之外,f[i][0]=f[i-1][0],f[0][i]=f[0][i-1]
终于到正式动态规划了(喜)
以红色点为例,每一个点都是上面和左面的值加起来(除了马能跳过来)
上AC代码了~
# include <iostream>
# include <cstdio>
using namespace std;
# define int long long
int n,m,x,y,f[25][25];
int v[25][25];
signed main() {
scanf("%lld%lld%lld%lld",&n,&m,&x,&y);
v[x][y]=v[x-2][y-1]=v[x-1][y-2]=v[x-2][y+1]=v[x-1][y+2]=v[x+1][y-2]=v[x+2][y-1]=v[x+1][y+2]=v[x+2][y+1]=-1;
f[0][0]=1;
for(int i=1;i<=m;i++){//横着第一排
if(v[0][i]==-1){
break;
}else{
f[0][i]=f[0][i-1];
}
}
for(int i=1;i<=n;i++){//竖着第一列
if(v[i][0]){
break;
}else{
f[i][0]=f[i-1][0];
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(!v[i][j]){
f[i][j]=f[i-1][j]+f[i][j-1];
}
}
}
printf("%lld",f[n][m]);
return 0;
}
其中v数组用来表示此点马是否能跳过来
制作不易,点个赞吧~