洛谷 P1002 [NOIP2002 普及组] 过河卒 动态规划 题解

48 篇文章 0 订阅
17 篇文章 0 订阅

直接上题目:

题目描述

棋盘上A点有一个过河卒,需要走到目标B点。卒行走的规则:可以向下、或者向右。同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。

棋盘用坐标表示,A点(0, 0)、B点(n, m)(n, m为不超过20的整数),同样马的位置坐标是需要给出的。

现在要求你计算出卒从A点能够到达B点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步,C≠A且C≠B。

 输入

一行四个数据,分别表示B点坐标和马的坐标。

输出

一个数据,表示所有的路径条数。 

本题思路:

一道动态规划题

动态规划三件套:

        初始化、状态定义、状态转移方程

        详情看这篇博客(点我)

这题与普通动态规划不同之处只有一个马

需要特殊考虑马,并把马的八个可以跳的位置标记出来,进行特殊判断

还有一个地方

就是第一行和第一列

(浅浅画个图)

 

这里,第一行和第一列要在正式动态规划之前考虑,除了马能跳到之外,f[i][0]=f[i-1][0],f[0][i]=f[0][i-1]

终于到正式动态规划了(喜)

 

 

以红色点为例,每一个点都是上面和左面的值加起来(除了马能跳过来)

上AC代码了~

# include <iostream>
# include <cstdio>
using namespace std;
# define int long long
int n,m,x,y,f[25][25];
int v[25][25];
signed main() {
    scanf("%lld%lld%lld%lld",&n,&m,&x,&y);
    v[x][y]=v[x-2][y-1]=v[x-1][y-2]=v[x-2][y+1]=v[x-1][y+2]=v[x+1][y-2]=v[x+2][y-1]=v[x+1][y+2]=v[x+2][y+1]=-1;
    f[0][0]=1;
    for(int i=1;i<=m;i++){//横着第一排 
     	if(v[0][i]==-1){
         	break;
		}else{
		 	f[0][i]=f[0][i-1];
		}
	}     
    for(int i=1;i<=n;i++){//竖着第一列 
     	if(v[i][0]){
        	break;
		}else{
         	f[i][0]=f[i-1][0];
		}
	}    
    for(int i=1;i<=n;i++){
     	for(int j=1;j<=m;j++){
     		if(!v[i][j]){
     			f[i][j]=f[i-1][j]+f[i][j-1];  
			}
		}    
	}    
    printf("%lld",f[n][m]);
    return 0;
}

其中v数组用来表示此点马是否能跳过来

蒟蒻のAC记录

制作不易,点个赞吧~ 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值