斯坦福小镇升级版——AI-Town搭建指南

本文详述了如何搭建AI-Town项目,对比了与斯坦福AI小镇的区别。AI-Town使用TypeScript/JavaScript编写,依赖Convex、Pinecone、Clerk和OpenAI等技术栈。文章提供了一步步的部署流程,包括环境配置、登录认证、文本生成模型的设置,以及向量数据库的配置。最后,项目可以通过localhost:3000访问。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导语:
8月份斯坦福AI小镇开源之后,引起了 AIGC 领域的强烈反响,但8月份还有另一个同样非常有意义的 AI-Agent 的项目开源,a16z主导的 AI-Town
本篇文章主要讲解如何搭建该项目,如有英文基础或者对这套技术栈熟悉,可直接参考该项目的 Readme;搭建该项目需要一台服务器、OpenAI 的 Key,以及能够访问外网,需要自行准备

技术栈简介

笔者之前搭建过斯坦福版本的AI小镇,也写过流程和代码分析,参见这篇文章

因此在搭建 AI-Town 的时候也对两者的技术栈和搭建过程进行了对比,后续还将再用一篇文章分析 AI-Town 的源码

对比来说,斯坦福的AI小镇是用 Python 搭建的环境,但用了H5的游戏引擎Phaser作为前端表现层,部署流程中遇到的问题靠自己摸索,还需要解决网络不通等问题(PS:笔者个人认为更像一个实验而非完整项目)

AI-Town 用 TypeScript/JavaScript 完成前后端所有代码的编写,虽然接入的组件和平台比较多,但相对的可扩展性更高(比如生成像素图和音乐等),搭建流程基本是全英文文档,但基本没有遇到什么卡点,列一下主要的技术栈:

### 如何将AI Engine与DeepSeek进行集成 #### 背景介绍 为了有效地利用AMD的AI引擎来增强DeepSeek的功能,理解两者的工作原理及其接口至关重要。在现代半导体架构设计中,AI引擎通常被用于加速特定类型的计算任务,特别是那些涉及大量矩阵运算的任务[^3]。 #### 技术准备 对于希望将AI引擎与DeepSeek集成的应用开发者而言,首要的是熟悉AI引擎所提供的API和支持的语言特性。这包括但不限于C++、Python以及其他高级编程语言的支持。此外,还需要掌握如何配置环境变量以便于调用底层硬件资源。 #### 实现过程 要实现两者的无缝对接,可以遵循如下方法: 1. **初始化设置** 安装必要的依赖库,并确保开发环境中已安装最新版本的Vitis AI SDK——这是由Xilinx提供的一套专门针对其FPGA产品的深度学习开发工具集。通过该SDK能够方便快捷地部署预训练好的神经网络模型至目标平台之上。 2. **加载模型** 使用Vitis AI提供的Model Zoo下载适用于目标任务场景下的预训练权重文件(.pb),接着借助`vaitrain`命令行工具将其转换为目标格式(.xmodel)以供后续处理使用。 3. **编写适配层代码** 编写一段中间件程序负责接收来自前端应用程序的数据请求并将之转发给后端推理服务;同时还要具备解析返回结果的能力从而反馈给用户界面部分展示出来。以下是简单的伪代码表示形式: ```cpp // C++ Pseudo Code Example void processRequest(const std::string& input_data){ // Send data to AI engine for inference auto result = ai_engine.infer(input_data); // Parse results and send back to client side parseAndSendBack(result); } ``` 4. **性能优化建议** 对于追求极致效率的应用来说,则需进一步探索诸如量化感知训练(Quantization Aware Training,QAT)等先进技术手段来减少模型大小的同时保持较高的预测精度水平不变。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值