数据结构:图的遍历

代码

#include <stdio.h>
#include <malloc.h>
#include <stdbool.h>

#define QUEUE_SIZE 10

int* visitedPtr;

typedef struct GraphNodeQueue {
	int* nodes;
	int front;
	int rear;
}GraphNodeQueue,*QueuePtr;

QueuePtr initQueue() {
	QueuePtr resultQueuePtr = (QueuePtr)malloc(sizeof(struct GraphNodeQueue));
	resultQueuePtr->nodes = (int*)malloc(QUEUE_SIZE * sizeof(int));
	resultQueuePtr->front = 0;
	resultQueuePtr->rear = 1;
	return resultQueuePtr;
}

bool isQueueEmpty(QueuePtr paraQueuePtr) {
	if ((paraQueuePtr->front + 1) % QUEUE_SIZE == paraQueuePtr->rear) {
		return true;
	}
	return false;
}

void enqueue(QueuePtr paraQueuePtr, int paraNode) {
	if ((paraQueuePtr->rear + 1) % QUEUE_SIZE == paraQueuePtr->front % QUEUE_SIZE) {
		printf("Error, trying to enqueue %d. queue full.\r\n", paraNode);
		return;
	}
	paraQueuePtr->nodes[paraQueuePtr->rear] = paraNode;
	paraQueuePtr->rear = (paraQueuePtr->rear+1) % QUEUE_SIZE;
}

int dequeue(QueuePtr paraQueuePtr) {
	if (isQueueEmpty(paraQueuePtr)) {
		printf("Error,empty queue\r\n");
		return -1;
	}

	paraQueuePtr->front = (paraQueuePtr->front + 1) % QUEUE_SIZE;

	return paraQueuePtr->nodes[paraQueuePtr->front];
}

typedef struct Graph {
	int** connections;
	int numNodes;
}*GraphPtr;

GraphPtr initGraph(int paraSize, int** paraData) {
	int i, j;
	GraphPtr resultPtr = (GraphPtr)malloc(sizeof(struct Graph));
	resultPtr->numNodes = paraSize;

	resultPtr->connections = (int**)malloc(paraSize * sizeof(int*));
	for (i = 0; i < paraSize; i++) {
		resultPtr->connections[i] = (int*)malloc(paraSize * sizeof(int));
		for (j = 0; j < paraSize; j++) {
			resultPtr->connections[i][j] = paraData[i][j];
		}
	}

	return resultPtr;
}

void initTranverse(GraphPtr paraGraphPtr) {
	int i;

	visitedPtr = (int*)malloc(paraGraphPtr->numNodes * sizeof(int));

	for (i = 0; i < paraGraphPtr->numNodes; i++) {
		visitedPtr[i] = 0;
	}
}

void depthFirstTranverse(GraphPtr paraGraphPtr, int paraNode) {
	int i;

	visitedPtr[paraNode] = 1;
	printf("%d\t", paraNode);

	for (i = 0; i < paraGraphPtr->numNodes; i++) {
		if (!visitedPtr[i]) {
			if (paraGraphPtr->connections[paraNode][i]) {
				if (paraGraphPtr->connections[paraNode][i]) {
					depthFirstTranverse(paraGraphPtr, i);
				}
			}
		}
	}
}

void widthFirstTranverse(GraphPtr paraGraphPtr, int paraStart) {
	int i, j, tempNode;
	i = 0;
	QueuePtr tempQueuePtr = initQueue();
	printf("%d\t", paraStart);
	visitedPtr[paraStart] = 1;
	enqueue(tempQueuePtr, paraStart);
	while (!isQueueEmpty(tempQueuePtr)) {
		tempNode = dequeue(tempQueuePtr);
		visitedPtr[tempNode] = 1;

		i++;

		for (j = 0; j < paraGraphPtr->numNodes; j++) {
			if (visitedPtr[j])
				continue;

			if (paraGraphPtr->connections[tempNode][j] == 0)
				continue;

			printf("%d\t", j);
			visitedPtr[j] = 1;
			enqueue(tempQueuePtr, j);
		}
	}
}

void testGraphTranverse() {
	int i, j;
	int myGraph[5][5] = {
		{0, 1, 0, 1, 0},
		{1, 0, 1, 0, 1},
		{0, 1, 0, 1, 1},
		{1, 0, 1, 0, 0},
		{0, 1, 1, 0, 0} };
	int** tempPtr;
	printf("Preparing data\r\n");

	tempPtr = (int**)malloc(5 * sizeof(int*));
	for (i = 0; i < 5; i++) {
		tempPtr[i] = (int*)malloc(5 * sizeof(int));
	}

	for (i = 0; i < 5; i++) {
		for (j = 0; j < 5; j++) {
			//printf("i = %d, j = %d, ", i, j);
			//printf("%d\r\n", tempPtr[i][j]);
			tempPtr[i][j] = myGraph[i][j];
			//printf("i = %d, j = %d, %d\r\n", i, j, tempPtr[i][j]);
		}
	}

	printf("Data ready\r\n");

	GraphPtr tempGraphPtr = initGraph(5, tempPtr);
	printf("num nodes = %d \r\n", tempGraphPtr->numNodes);
	printf("Graph initialized\r\n");

	printf("Depth first visit:\r\n");
	initTranverse(tempGraphPtr);
	depthFirstTranverse(tempGraphPtr, 4);

	printf("\r\nWidth first visit:\r\n");
	initTranverse(tempGraphPtr);
	widthFirstTranverse(tempGraphPtr, 4);
}

int main() {
	testGraphTranverse();
	return 1;
}

运行结果

Preparing data
Data ready
num nodes = 5
Graph initialized
Depth first visit:
4       1       0       3       2
Width first visit:
4       1       2       0       3

代码说明

1.GraphNodeQueue,定义了一个循环队列,用于图的遍历,如广度优先搜索

2.Graph,定义了一个图的数据结构,connections:一个二维数组,表示图中节点之间的连接关系,connections[i][j]表示从节点i到节点j的连接关系

图示解说

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值