问题描述:
完全背包是在N种物品中选取若干件(同一种物品可多次选取)放在空间为V的背包里,且第 i 种物品的体积是 vi,价值是 wi。求解怎么装物品可使背包里物品总价值最大。
解题思路:
1.状态表示:首先定义一个二维数组f[i][j],用它来表示所有只考虑前i个物品,且总体积不大于j的所有选法,它存的数表示这一个集合的每一个选法的最大值。
2.状态计算: 可将集合f[i][j]分成若干部分,每一部分表示第i件物品选k个:
(1):当k等于0时,易得:可表示为f[i-1][j];
(2):当k不等于0时:可以理解为先去掉k个物品i求当前状态下的最大值,即f[i-1][k*v[i]],然后再加回来k个物品i,即最终结果为f[i-1][j-k*v[i]]+k*w[i];
最后求(1)和(2)的最大值即可得到转移方程。
其思维导图可表示为:(y总yyds ~-~)
3.空间优化: 先分别将f[i][j]和f[i][j-v]拆分开,观察可得两者只差一个w[i],所以f[i][j]可表示为max(f[i-1][j],f[i][j-v]+w[i])。
如果理解了,可以尝试一下下面的题;
有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。
第 i 种物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,VN,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 NN 行,每行两个整数 vi,wivi,wi,用空格隔开,分别表示第 ii 种物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例
10
代码如下:
#include<bits/stdc++.h>
#include <iostream>
using namespace std;
int n,m;
int v[1010],w[1010];
int f[1010];
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++) cin>>v[i]>>w[i];
for(int i=1;i<=n;i++)
{
for(int j=v[i];j<=m;j++)
{
f[j]=max(f[j],f[j-v[i]]+w[i]);
}
}
cout<<f[m]<<endl;
return 0;
}