【动态规划】--完全背包问题

问题描述:

完全背包是在N物品中选取若干件(同一种物品可多次选取)放在空间为V的背包里,且第 i 种物品的体积是 vi,价值是 wi。求解怎么装物品可使背包里物品总价值最大。

解题思路:

1.状态表示:首先定义一个二维数组f[i][j],用它来表示所有只考虑前i个物品,且总体积不大于j的所有选法,它存的数表示这一个集合的每一个选法的最大值。

2.状态计算: 可将集合f[i][j]分成若干部分,每一部分表示第i件物品选k个:

(1):当k等于0时,易得:可表示为f[i-1][j];

(2):当k不等于0时:可以理解为先去掉k个物品i求当前状态下的最大值,即f[i-1][k*v[i]],然后再加回来k个物品i,即最终结果为f[i-1][j-k*v[i]]+k*w[i];

最后求(1)和(2)的最大值即可得到转移方程。

其思维导图可表示为:(y总yyds ~-~)

 3.空间优化:  先分别将f[i][j]和f[i][j-v]拆分开,观察可得两者只差一个w[i],所以f[i][j]可表示为max(f[i-1][j],f[i][j-v]+w[i])。

如果理解了,可以尝试一下下面的题;

有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。

第 i 种物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,VN,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 NN 行,每行两个整数 vi,wivi,wi,用空格隔开,分别表示第 ii 种物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000
0<vi,wi≤1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例

10

代码如下:

#include<bits/stdc++.h>
#include <iostream>
using namespace std;
int n,m;
int v[1010],w[1010];
int f[1010];
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)  cin>>v[i]>>w[i];
    
    for(int i=1;i<=n;i++)
    {
        for(int j=v[i];j<=m;j++)
        {
            f[j]=max(f[j],f[j-v[i]]+w[i]);
        }
    }
    cout<<f[m]<<endl;
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值