What makes training multi-modal classification networks hard?

paper : What makes training multi-modal classification networks hard?
cvpr2020

一句话总结:多模态训练时利用验证集与训练集结合得到的过拟合指标调制不同模态的Loss权重,解决多模态训练不平衡问题。

一句话讲完,还是有很多问题的,这篇文章也值得我写一篇笔记。


多模态融合方式

(1)Early Fusion
在原始数据输入的时候就concat或通过其他方式融合
(2)Mid Fusion
在提取特征后concat,再过Fusion模块,再过分类头
(3)Late Fusion
提取特征后concat,直接过分类头

什么是多模态训练不平衡问题?

起因是作者发现在视频分类任务上,多模态模型反而不如单模态模型
在这里插入图片描述
如上图,A是Audio,OF是光流(optical flow)。
用的模型都是差不多的,举个例子ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值