论文链接:https://arxiv.org/abs/2201.12329
最大的贡献是把DETR的Object Query定义为可学习的Anchor
Anchor-based DETR来临了
(还有点争议,说是Anchor-based,这Anchor又不是预定义的,说是Anchor-free,这Anchor也不是由image feature end-to-end预测来的)
首先是一个实验,为啥DETR收敛这么慢?首先排除backbone的原因,因为是预训练好的,那就只能是Decoder的原因。
其中,Decoder包含好几个部分,包括输入,Decoder,输出的匈牙利匹配,本篇是在输入Query上下文章。
输入的可学习的Query,会不会是因为Query学的太慢了呢?于是干脆直接把Query固定为在COCO上预训练好的,看会不会收敛快一点,结果令人比较失望:
并没有提多少,这说明不是Query学的慢了,而是Decoder学的慢了,给他一样的好的Query,他也得不到好的输出结果,导致每次匈牙利算法匹配的结果都不一样。
因此加速收敛本质上是加速Decoder的学习
要加速Decoder,有几个方面,
一是使用更好的Decoder(如何定义更好,不得而知)
二是喂给它更好的sample与监督。
第二个方面就引申出了包括本篇在内的后面几个工作
如何定义“更好”?
首先得搞明白喂进去的输入是个啥?
(1)左边是Encoder,右边是Decoder,可以看到K是feature embedding + positional embedding ,Q是feature embedding + Queries,
(2)其中,Q的“feature embedding”实际上是上一层Decoder的输出,也就是Value(Encoder的Feature embedding)根据注意力取出来的一部分,是不是很像ROI pooling?只是这里取的不是一部分区域,而是这个区域经过全局注意力之后的结果,相当于是多了Context
从(1)的角度看,Query可以类比为Positional Embedding,从(2)的角度看,Query是否就是Proposal?或者说,Proposal的位置信息,也就是Anchor
综上所述,Query实际上就是Positional Embedding形式的Anchor,与Decoder Embedding相加后,相当于是给ROI pooling后的Feature上PE(positional
embedding),用于继续跟总Feature求注意力矩阵,拿ROI。
经过多层堆叠之后,拿到了最精确的ROI,就可以过FFN输出分类和回归结果(DETR的做法)
》》》》》》》》》》》》》》
有什么问题?
(1)凭什么多层堆叠就能拿到更精确的ROI?->这是由最后一层的监督决定的,不过可能也是导致其收敛慢的原因。
要想其收敛更快,显然的方法就是给它更多的监督==>每一个layer都给它一个gt的监督
这里又引出几个问题:
1、layer输出的并不是bbox,如何用gt的bbox去监督?
2、每个layer如何做正样本分配?
对于第一个问题,有几种方式可以解决:
1’ 在每个layer加个FFN检测头,输出分类和回归的结果
2还没想到
DAB-DETR就是采用的1’的做法
不同的是,只输出回归的结果,也就是 Δ x , Δ y , Δ w , Δ h \Delta{x},\Delta{y},\Delta{w},\Delta{h} Δx,Δy,Δw,Δh,同时,Query就是用sin与cos编码后的anchor
因此,可以拿编码前的结果与输出的回归系数相加,得到输出的proposal(用gt监督),同时,这个proposal又可以作为下一阶段的Query输入,相当于下一阶段又更精确的Proposal。很妙,也是很自然的想法
现在来解决第二个问题,每个layer输出的N个proposal用哪个gt来监督?
很自然的想法就是遵循常规OD,用IoU最大的来监督/
想多了,直接用DETR最后的匈牙利算法来分配样本算了。。
》》》》》》》》》》
插播一篇Conditional-DETR: