通过丢硬币的案例理解HMM所解决的问题

我们可以coin tossing(扔硬币)的例子来讲解HMM相关的下列问题:

  1. 计算likelihood
  2. 找出最优tag
  3. 计算/学习模型参数

假设我们有2枚硬币,这两枚硬币与普通硬币不一样,他们扔出上面或反面的概率,并不是0.5。有可能是P(正)=0.7, P(负)=0.3,也有可能P(正)=0.4, P(负)=0.6,不过暂时我们都是不知道的。这个概率B我们可称之为Emission Probability
然后有一个人,每次会依靠一定的规则从中拿出一枚硬币进行扔硬币的操作,这个规则也是确定的,比如符合以下概率:

12
10.70.3
20.20.8

纵轴表示当前扔的硬币,横轴表示下一次扔的硬币,例如 如果这次他扔了硬币1,那么他下次扔硬币1的概率为0.7,扔硬币2的概率为0.3。当然以上也只是假设,具体概率我们也不知道。我们可将该概率矩阵A称之为Transition Matrix
然后文章开头的三个问题,我们可以转换成:

  1. 找出某种扔硬币方法的概率,例如P(y=正正正负负正|x)=?
  2. 找出可能性最大的扔硬币的方法
  3. 求出A、B
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值