卷积神经网络

1.全连接:相邻层的所有神经元之间都有连接。
2.全连接层存在的问题:数据的形状被“忽视”了。比如,输入数据是图像时,图像通常是高、长、通道方向上的三维形状。但是,向全连接层输入时,需要将3维数据拉平为1维数据。
3.填充:在进行卷积层的处理之前,有时要向输入数据的周围填入固定的数据(比如0等),这称为填充。
使用填充主要是为了调整输出大小。 因为每次进行卷积运算都会缩小空间,那么在某个时刻输出大小就有可能变为1。
4.步幅: 应用滤波器的位置间隔称为步幅。
5.池化:缩小高、长方向上的空间的运算。
MAX池化池化是从目标区域中取出最大值。
Average池化是计算目标区域的平均值。

6卷积层和池化层的实现
6.1 基于im2col的展开
NumPy中存在使用for语句后处理变慢的缺点(NumPy中,访问元素时最好不要用for语句)
im2col是一个函数,将输入数据展开以适合滤波器(权重)。是把包含批数量的4维数据转换成了2维数据。
.在这里插入图片描述
im2col名称是“image to column”的缩写,翻译:从图像到矩阵“
7.CNN
在这里插入图片描述
在这里插入图片描述

8.CNN的可视化
8.1第一层权重的可视化
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值