学习笔记
文章平均质量分 56
摸鱼儿Tao
这个作者很懒,什么都没留下…
展开
-
算法学习3
算法01背包问题2 完全背包问题01背包问题#pragma warning(disable:4996)#include<cstring>#include<iostream>#include<unordered_set>using namespace std;const int N = 1010;int n, m;int v[N], w[N];int f[N][N]; //f[i][j]表示[1,i]物品任取放入容量为j的背包int main(原创 2022-05-03 19:42:06 · 531 阅读 · 0 评论 -
算法学习2
1 试除法求约数#pragma warning(disable:4996)#include<cstring>#include<iostream>using namespace std;#include<vector>#include<algorithm>#include<queue>using namespace std;vector<int> get_divisors(int n){ vector<int原创 2022-04-16 15:28:06 · 374 阅读 · 0 评论 -
算法学习1
算法1 快速排序2 归并排序3 二分查找4 高精度加法5 高精度减法6 高精度除法7 高精度乘法1 快速排序#include<iostream>#pragma warning(disable:4996)using namespace std; //快速排序const int N = 1e6 + 10;int n;int q[N];void quick_sort(int q[], int l, int r){ if (l >= r) return; int x = q原创 2022-04-10 16:13:08 · 361 阅读 · 0 评论 -
pytorch学习笔记
Pytorch学习1 加载数据初识2 TensorBorad的使用2.1 add_scalar()的使用2.1 add_image()的使用2.3 torchvision 中的transforms2.4 常见的Transforms2.4.1 ToTensor Normalize2.4.2 Resize Compose RandomCrop3 torchvision中的数据集使用4 DataLoader的使用5 神经网络的基本骨架-nn.Module的使用6 卷积操作7 神经网络卷积层1 加原创 2021-11-21 16:55:47 · 1627 阅读 · 1 评论 -
C++ 学习笔记9
目录1 STL初识1.1 STL的诞生1.2 STL基本概念2.3 STL六大组件1.4 STL中容器、算法、迭代器1.5 容器算法迭代器初识1.5.1 vector存放内置数据类型1.5.2 Vector存放自定义数据类型1.5.3 Vector容器嵌套容器1 STL初识1.1 STL的诞生1.2 STL基本概念2.3 STL六大组件1.4 STL中容器、算法、迭代器1.5 容器算法迭代器初识1.5.1 vector存放内置数据类型#include<iostream&原创 2021-10-01 19:59:36 · 126 阅读 · 0 评论 -
C++ 8 学习笔记
目录1 文件操作1.1 写文件1 文件操作1.1 写文件#include<fstream>//头文件包含//文本文件 写文件void test01(){ //1、包含头文件 fstream //2、创建流对象 ofstream ofs; //3、指定打开方式 ofs.open("test.txt", ios::out); //4、写内容 ofs << "姓名:张三" << endl; ofs << "性别:男" &l原创 2021-09-16 14:38:57 · 242 阅读 · 0 评论 -
C++ 学习7
C++继承继承原创 2021-08-08 15:31:17 · 169 阅读 · 0 评论 -
C++ 学习6
目录1 对象的初始化和清理1.1 构造函数和析构函数1.2 构造函数的分类以及调用1.3 拷贝构造函数调用时机1.4 构造函数调用规则1.5 深拷贝与浅拷贝1.6 初始化列表1.7 类对象作为类成员1 对象的初始化和清理1.1 构造函数和析构函数#include<iostream>using namespace std;#include<string>//对象的初始化和清理//1、构造函数 进行初始化操作class Person{ //1.1 、构造函数原创 2021-07-24 21:58:49 · 385 阅读 · 7 评论 -
C++学习5
目录1 函数提高1.1 函数默认参数3.2 函数占位参数1.3 函数重载1.3.1 函数重载概述1.3.2 函数重载注意事项2 类和对象2.1 封装2.1.1 封装的意义1 函数提高1.1 函数默认参数//函数默认参数//如果我们自己传入数据,就用自己的数据,如果没有,name用默认值//语法:返回值类型 函数名(形参 =默认值){}int func(int a, int b = 10, int c = 30){ return a + b + c;}//注意事项//1、如果某个位置已原创 2021-05-22 10:17:16 · 310 阅读 · 0 评论 -
c++----学习4
核心编程1内存分区模型1.1 程序运行前1.2 程序运行后1.3 new操作符1内存分区模型1.1 程序运行前#include<iostream>using namespace std;#include<string>//全局变量int g_a = 10;int g_b = 10;//const修饰的全局变量,全局常量const int c_g_a = 10;const int c_g_b = 10;int main(){ //创建局部变量原创 2021-05-08 21:10:34 · 175 阅读 · 5 评论 -
OpenCV-Python----------学习---------视频处理
@TOC在这里插入代码片1 视频处理1.1 VideoCapture 类捕获对象=cv2.VideoCapture("摄像头ID号")retva1=cv2.VideoCapture.isOpend()# 如果成功,则返回值retval为True# 如果不成功,则返回值retval为Falseretval=cv2.VideoCapture.open(index)# index为摄像头ID号# retval为返回值,当摄像头(或者视频文件)被成功打开时,返回值为Trueretval=cv原创 2021-04-21 13:52:30 · 162 阅读 · 1 评论 -
C++ 学习2
目录7. 指针7.1 指针的基本概念7.2 指针的定义和使用7.3 指针所占的内存空间7.4 空指针和野指针7.5 const修饰指针7.6 指针和数组7.7 指针和函数7.8 指针、数组、函数8结构体8.1 结构体基本概念8.2 结构体定义和使用8.3 结构体数组7. 指针7.1 指针的基本概念7.2 指针的定义和使用7.3 指针所占的内存空间7.4 空指针和野指针7.5 const修饰指针7.6 指针和数组7.7 指针和函数7.8 指针、数组、原创 2021-04-20 21:49:13 · 133 阅读 · 1 评论 -
OpenCV-Python----------学习---------------图像分割与提取
目录1 图像分割与提取1.1 用分水岭算法实现图像分割与提取1.1.1 分水岭算法图像分割实例1.2 交互式前景提取1 图像分割与提取1.1 用分水岭算法实现图像分割与提取未知区域UN=(图像O-确定背景B)- 确定前景F函数connectedComponentsretval,labels=cv.connectedComponents(image). image为8位单通道的待标注图像. retval为返回的标注的数量. labels为标注的结果图像为了能使用分水岭算法,还需原创 2021-04-20 11:03:20 · 393 阅读 · 1 评论 -
OpenCV-Python----学习-----------模板匹配-----------霍夫变换
目录1.模板匹配1.1 模板匹配基础1.2 多模板匹配1.2.1 获取匹配位置的集合1.2.2 循环1.2.3 调整坐标1.2.4 标记匹配图像的位置2.霍夫变换2.1 HoughLines函数2.2 HoughLinesP函数2.3霍夫圆环变换1.模板匹配1.1 模板匹配基础result = cv.matchTemplate(image,templ,method,mask). image 为原始图像。. templ 为模板图像。. method为匹配方法。. mask 为模板图像掩模(通常原创 2021-04-18 20:55:23 · 174 阅读 · 0 评论 -
OpenCV-Python学习------------直方图处理------------傅里叶变换
目录1. 直方图处理1.1 绘制直方图1.1.1 使用Numpy绘制直方图1.1.2 使用OpenCV绘制直方图1.1.3 使用掩模绘制直方图1. 直方图处理1.1 绘制直方图1.1.1 使用Numpy绘制直方图1.1.2 使用OpenCV绘制直方图1.1.3 使用掩模绘制直方图...原创 2021-04-17 20:38:37 · 164 阅读 · 1 评论 -
OpenCV-Pytho 学习--------Canny边缘检测--------图像金字塔-------图像轮廓
目录1 .Canny边缘检测1.1 Canny边缘检测基础2.图像金字塔2.1 pyDown函数及使用2.2 pyrUp函数及使用2.31 .Canny边缘检测1.1 Canny边缘检测基础1.去噪2.计算梯度的幅值与方向3.非极大值抑制4.确定边缘2.图像金字塔2.1 pyDown函数及使用2.2 pyrUp函数及使用2.3...原创 2021-04-15 10:52:58 · 232 阅读 · 0 评论 -
C++学习1
这里写目录标题C ++1 C++初识1.1 hello1.2 注释.1.3 变量1.4 常量1.5关键字1.6标识符命名规则2数据类型2.1整型2.2 sizeof关键字2.3实型(浮点型)2.4字符型2.5转义字符2.6 字符串型2.7 布尔类型boolC ++1 C++初识1.1 hello1.2 注释.1.3 变量1.4 常量1.5关键字1.6标识符命名规则2数据类型2.1整型2.2 sizeof关键字2.3实型(浮点型)2.4字符型2.5转义字符原创 2021-04-13 21:51:17 · 171 阅读 · 0 评论 -
OpenCV-Python 学习-------图像梯度
目录1 图像梯度1.1Sobel算子yi1 图像梯度1.1Sobel算子yi原创 2021-04-10 15:07:56 · 79 阅读 · 0 评论 -
OpenCV--Python 学习-形态学操作
目录1.形态学操作1.1腐蚀1.2 膨胀1.3 通用形态学函数1.3.1开运算1.3.2 闭运算1.4形态学梯度运算1.5 礼貌运算1.6 黑帽运算1.7 核函数1.形态学操作1.1腐蚀1.2 膨胀1.3 通用形态学函数1.3.1开运算先腐蚀,再膨胀1.3.2 闭运算1.4形态学梯度运算形态学梯度运算是用图像的膨胀图像减去腐蚀图像的操作1.5 礼貌运算礼貌运算是用原始图像减去其开运算图像的操作。1.6 黑帽运算黑帽运算是用闭运算减去原始图像的操作。原创 2021-04-09 10:55:23 · 181 阅读 · 0 评论 -
Opencv-Python 学习 --------图像平滑处理
目录1.图像平滑处理1.1均值滤波1.2方框滤波1.3 高斯滤波1.4 中值滤波1.5 双边滤波1.6 2D卷积![在这里插入图片描述](https://img-blog.csdnimg.cn/20210408114233742.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2x0NDA1NTE0NjIz,size_16,color_FFFFFF,t原创 2021-04-08 11:43:01 · 81 阅读 · 0 评论 -
OpenCV-Python 学习-------阈值处理
目录1.阈值处理1.1 threshold函数1.1.1二值化阈值处理(cv.THRESH_BINARY)1.1.2 反二值化阈值处理(cv.THRESH_BINARY_INV)1.1.3截断阈值化处理(cv.THRESH_TRUNC)1.1.4 超阈值零处理(cv.THRESH_TOZERS_INV)1.1.5 低阈值零处理(cv.THRESH_TOZERO)1.2 自适应阈值处理1.3 Otsu处理1.阈值处理1.1 threshold函数1.1.1二值化阈值处理(cv.THRESH_BINARY原创 2021-04-07 20:15:03 · 472 阅读 · 0 评论 -
OpenCV 学习 -----几何变换
目录几何变换几何变换原创 2021-04-06 14:30:21 · 136 阅读 · 0 评论 -
OpenCv 学习
目录图像运算1位平面分解2图像加密和解密3数字水印脸部打码及解码4.色彩空间类型转换图像运算1位平面分解2图像加密和解密3数字水印脸部打码及解码4.色彩空间类型转换bgr------graygray-------bgrR=Gray,G=Gray,B=Gray...原创 2021-04-04 19:57:42 · 142 阅读 · 2 评论 -
OpenCv-Python 学习10 案例
案例:人脸案例2.实现原创 2021-03-25 21:18:28 · 91 阅读 · 0 评论 -
OpenCv-Python 学习9
视频追踪1.meanshift2. Camshift3.算法总结原创 2021-03-25 16:32:13 · 59 阅读 · 0 评论 -
OpenCv-Python学习8
视频读写1.从文件中读取视频并播放2 保存视频原创 2021-03-25 14:45:32 · 65 阅读 · 0 评论 -
OpenCv - Python 学习7
角点特征1 图像的特征1 . Harris角点检测1.12.Shi-Tomasi角点检测原创 2021-03-24 14:32:45 · 78 阅读 · 1 评论 -
OpenCv-python 学习6
模板匹配1.1 原理2. 霍夫变换2.2 霍夫线检测2.3 霍夫圆检测原创 2021-03-21 16:39:42 · 63 阅读 · 0 评论 -
OpenCv - Python 学习5
直方图1灰度直方图1.1 原理1.2 直方图的计算和绘制1.3 掩膜的应用2直方图均衡化2.2 自适应的直方图均衡化边缘检测2. Sobel检测算子3. laplacian算子4. Canny边缘检测原创 2021-03-20 15:25:59 · 75 阅读 · 0 评论 -
OpenCv-Pyhton 学习4
图像平滑1图像噪声1.2 高斯噪声2图像平滑2.1 均值滤波2.2 高斯滤波2.3 中值滤波原创 2021-03-19 21:08:08 · 78 阅读 · 0 评论 -
opencv- python 学习3
形态学操作1连通性2.1腐蚀和膨胀结构A腐蚀后图,上面的绿色没有的2.2开闭运算2.闭运算2.3 礼帽与黑帽原创 2021-03-19 16:44:06 · 72 阅读 · 0 评论 -
opencv-python学习2
1图像的加法“模”是Mod的音译,含义为求余。饱和运算,就是当运算结果大于一个上限或小于一个下限时,结果就等于上限或是下限。原创 2021-03-18 15:43:30 · 68 阅读 · 0 评论 -
opencv-python学习1
1.1读取图像1.API1.2显示图像1.3保存图像、2绘制几何图形2.1绘制直线2.2绘制圆形2.3绘制矩形2.4向图像中添加文字3 获取并修改图像中的像素点4获取图像的属性5 图像通道的拆分与合并6 色彩空间的改变...原创 2021-03-16 21:50:16 · 114 阅读 · 0 评论 -
卷积神经网络
。。。原创 2021-02-19 11:43:57 · 81 阅读 · 0 评论 -
损失函数
1.交叉熵误差2.mini-batch神经网络的学习也是从训练数据中选出一批数据(称为mini-batch,小批量),然后对每个mini-batch进行学习。使用np.random.choice(60000,10)会从0到59999之间随机选择10个数字。3.mini-batch版交叉熵误差的实现当监督数据是标签形式(非one-hot表示,而是像“2”“7”这样的标签)时:...原创 2021-01-25 20:11:10 · 99 阅读 · 0 评论 -
神经网络
1.1从感知机到神经网络1.1.1神经网络的例子最左边的一列称为输入层,最右边的一列称为输出层,中间的一列称为中间层。中间层有时也称为隐藏层。1.1.2激活函数激活函数的作用在于决定如何来激活输入信号的总和。a= b+w1x1+w2x2y=h(a)激活函数是连接感知机和神经网络的桥梁。“朴素感知机”是指单层网络,指的是激活函数使用了阶跃函数的模型。“多层感知机”是指神经网络,即使用sigmoid函数等平滑的激活函数的多层网络。1.2激活函数1.2.1阶跃函数的实现参数x只能接受实数原创 2021-01-23 17:47:33 · 313 阅读 · 0 评论 -
感知机的实现
1.1 简单实现1.2导入权重和偏置把θ换成-by= 0 (b+w1x1+w2x2<=0)1 (b+w1x1+w2x2>0)b称为偏置,w1和w2称为权重。wx的结果就是它们的各个元素分别相乘([0,1][0.5,0.5] —》[0,0.5])。np.sum(w*x)再计算相乘后的各个元素的总和。1.3 使用权重和偏置的实现具体地说,w1和w2是控制输入信号的重要性的参数,而偏置是调整神经元被激活的容易程度(输出信号为1的程度)的参数。比如,若b为-0.1,则只要输入信号原创 2021-01-20 14:31:30 · 297 阅读 · 0 评论 -
感知机
1 感知机1.1 感知机是什么感知机接受多个输入信号,输出一个信号。这里所说的“信号”可以想象成电流或河流那样具备“流动性”的东西。和实际的电流不同的是,感知机的信号只有“流/不流”(1/0)两种取值。在本书中,0对应“不传递信号”,1对应“传递信号”。x1和x2是输入信号,y是输出信号,w1、w2是权重。图中的O称为“神经元”或者“节点”。神经元会计算传送过来的信号的总和,只有当这个总和超过了某个界限值时,才会输出1。这也称为“神经元被激活”。这里将这个界限值称为阈值,用符号θ表示。权重越大原创 2021-01-19 16:22:40 · 94 阅读 · 0 评论 -
Matplotlib
Matplotlib是用于绘制图形的库,使用Matplotlib可以轻松地绘制图形和实现数据的可视化。1.1 绘制简单图形可以使用matplotlib的pyplot模块绘制图形。绘制sin函数曲线:这里使用NumPy的arrange方法生成了[0,0.1,0.2,…,5.8,5.9]的数据,将其设为x。对x的各个元素,应用NumPy的sin函数np.sin(),将x、y的数据传给plt.plot方法,然后绘制图形。最后,通plt.show()显示图形。 关于plot():https://blog原创 2021-01-18 19:58:09 · 109 阅读 · 0 评论 -
NumPy
1.NumPy在深度学习的实现中,经常出现数组和矩阵的计算。NumPy的数组类(numpy.array)中提供了很多便捷的方法,在实现深度学习时,我们将使用这些方法。1.1导入NumPyNumPY是外部库。将numpy作为np导入。1.2生成NumPy数组要生成NumPy数组,需要使用np.array()方法。np.array()接收Python列表作为参数,生成NumPy数组(numpy.ndarray)ndarray本质是数组,其不同于一般的数组,或者Python 的list的地方在原创 2021-01-18 16:28:56 · 155 阅读 · 0 评论