nlp任务分类及适用方法

 

### 自然语言处理任务类型和分类 自然语言处理NLP)涵盖了多种任务类型,这些任务可以按照不同的标准进行分类。根据学习材料中的描述[^1],NLP的主要领域包括但不限于以下几个方面: #### 一、基于功能划分的任务类型 - **语言模型** 构建能够预测下一个单词的概率分布的模型,这对于理解哪些词语更可能连在一起至关重要[^2]。 - **形态学分析** 关注于单个词汇内部结构的研究,比如词干提取、派生变化等,这有助于解析词汇的形式特征及其变体形式。 - **句法分析** 探讨如何通过语法关系来构建合理的句子结构,即确定各个成分之间的依存关系或短语层次结构。 - **语义学** 致力于解释每个单独词汇的意义以及它们组合成更大单位后的整体含义,涉及从浅层到深层的不同层面的理解过程。 #### 二、基于应用目的划分的任务类别 除了上述按学科分支定义的功能性任务外,在实际应用场景中还可以进一步细分为更多具体的应用型任务,例如: - 文本分类 对文档或者片段打上预设类别的标签,如情感倾向判断、主题识别等。 - 实体识别 找出并标注文本内的特定实体对象,像人名、地名、组织机构名称等专有名词。 - 机器翻译 将一种自然语言转换为目标语言的过程,保持原文意义的同时适应目标语言的习惯表达方式。 - 舆情监控 收集互联网上的公开言论数据,经过加工整理后为企业提供市场反馈情报支持。 为了实现某些具体的NLP任务,通常还需要创建相应的“字典”,其中包含了所有待预测的目标标签。可以通过调用`make_label_dictionary()`方法自动生成这样的字典文件,并指定所需的标签类型作为参数传递给该函数[^3]。 ```python from some_nlp_library import Corpus corpus = Corpus() label_dict = corpus.make_label_dictionary('desired_label_type') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值