随着二手车市场的快速发展,消费者对二手车的需求逐渐增加,然而,由于二手车的定价涉及多种复杂因素,不同条件下的车辆价值差异较大,如何精准地评估二手车的市场价值成为了一个亟待解决的问题。本项目通过数据分析和机器学习建模,尝试识别并量化影响二手车价格的主要因素,并构建一个价格预测模型,为消费者和行业从业者提供数据支持。
本项目通过系统的数据分析和建模过程,深入探讨了影响二手车价格的多方面因素,并尝试构建预测模型。主要结论如下:
- 通过可视化分析、斯皮尔曼相关性分析及方差分析,发现二手车价格受到多个维度因素的综合影响,这些因素包括:汽车品牌、具体型号、制造年份、行驶里程、燃料类型、变速器类型、外观及内饰颜色、事故历史记录以及发动机排量。这表明二手车定价是一个复杂的多变量决策过程。
- 尽管采用了随机森林和岭回归这两种常用的机器学习模型,但在预测二手车价格方面的表现均未达到理想效果,原因可能是:
- 二手车价格分布大,难以捕捉高价车和低价车。
- 不同车型、年份、配置的样本量可能不均衡,稀疏样本的极值可能会影响模型的稳定性。
数据展示: