LeetCode69 Sqrt(x)**

链接地址:https://leetcode.com/problems/sqrtx/

这道题就是求一个数的平方根

我这里提供三种方法

1:大家都知道平方根一定都是[1,x/2]之间,所以从1循环到x/2, 但当x=1是通过的,不是好方法而且会TLE

class Solution {    // TLE而且不精确
public:
    int sqrt(int x) {
        int t = x/2;
        for(int i = 0; i<= t; i++)
            if((i * i) == x) return i;
        return -1;
    }
};

2:二分法

我们知道二分法所需要的时间复杂度为O(lgN),这样就不会超时了

class Solution {
public:
    int sqrt(int x) {
        double begin = 0;
        double end = x;
        double result = 1;
        double mid = 1;
        while(abs(result-x) > 0.000001){
            mid = (begin+end)/2;
            result = mid*mid;
            if(result > x)   // 二分的范围
                end = mid;
            else begin = mid;
        }
        return (int)mid;
    }
};
3:牛顿迭代法

牛顿迭代法Newton's method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。


以下代码cur = pre/2 + x/(2*pre)是化简计算的结果。。这里的f(x) = x^2-n

//*牛顿迭代法*/
class Solution {
public:
    int sqrt(int x) {
        double pre = 0;
        double cur = x;           //  这里从x开始 从x/2开始会导致 1 不能满足  x(n+1)= xn - f'(xn)/f(xn) 
        while(abs(cur - pre) > 0.000001){
            pre = cur;
            cur = (pre/2 + x/(2*pre));
        }
        return int(cur);
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值