链接地址:https://leetcode.com/problems/sqrtx/
这道题就是求一个数的平方根
我这里提供三种方法
1:大家都知道平方根一定都是[1,x/2]之间,所以从1循环到x/2, 但当x=1是通过的,不是好方法而且会TLE
class Solution { // TLE而且不精确
public:
int sqrt(int x) {
int t = x/2;
for(int i = 0; i<= t; i++)
if((i * i) == x) return i;
return -1;
}
};
2:二分法
我们知道二分法所需要的时间复杂度为O(lgN),这样就不会超时了
class Solution {
public:
int sqrt(int x) {
double begin = 0;
double end = x;
double result = 1;
double mid = 1;
while(abs(result-x) > 0.000001){
mid = (begin+end)/2;
result = mid*mid;
if(result > x) // 二分的范围
end = mid;
else begin = mid;
}
return (int)mid;
}
};
3:牛顿迭代法
牛顿迭代法(Newton's method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。
以下代码cur = pre/2 + x/(2*pre)是化简计算的结果。。这里的f(x) = x^2-n
//*牛顿迭代法*/
class Solution {
public:
int sqrt(int x) {
double pre = 0;
double cur = x; // 这里从x开始 从x/2开始会导致 1 不能满足 x(n+1)= xn - f'(xn)/f(xn)
while(abs(cur - pre) > 0.000001){
pre = cur;
cur = (pre/2 + x/(2*pre));
}
return int(cur);
}
};