
全栈工程师开发手册 (作者:栾鹏)
k均值聚类的相关的知识内容可以参考
http://blog.csdn.net/luanpeng825485697/article/details/78347433
K-means
k-means 算法将一组 N 样本 X 划分成 K 不相交的 clusters (簇) C, 每个都用 cluster (该簇)中的样本的均值 $mu_j $描述。 这个 means (均值)通常被称为 cluster(簇)的 “centroids(质心)”; 注意,它们一般不是从 X 中挑选出的点,虽然它们是处在同一个 space(空间)。 K-means(K-均值)算法旨在选择最小化 inertia(惯性) 或 within-cluster sum of squared(簇内和的平方和)的标准的 centroids(质心):
k均值聚类过程: