python机器学习库sklearn——集成方法(Bagging、Boosting、随机森林RF、AdaBoost、GBDT)

分享一个朋友的人工智能教程。零基础!通俗易懂!风趣幽默!还带黄段子!大家可以看看是否对自己有帮助:点击打开

docker/kubernetes入门视频教程


全栈工程师开发手册 (作者:栾鹏)
python数据挖掘系列教程

集成方法 的目标是把多个使用给定学习算法构建的基估计器的预测结果结合起来,从而获得比单个估计器更好的泛化能力/鲁棒性。集成方法 相关的知识内容可以参考
https://blog.csdn.net/luanpeng825485697/article/details/79383492

这里只讲述sklearn中如何使用集成学习。

Bagging 元估计器

# 产生样本数据集
from sklearn.model_selection import cross_val_score
from sklearn import datasets
iris = datasets.load_iris()
X, y = iris.data[:, 1:3], iris.target


# ==================Bagging 元估计器=============
from sklearn.ensemble import BaggingClassifier
from sklearn.neighbors import KNeighborsClassifier
baggin
©️2020 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客 返回首页
实付9.90元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值