逻辑代数的逻辑运算、基本定律、常用公式、基本规则

一、逻辑运算

在这里插入图片描述

二、基本定律

2.1 常量间的运算

  • 与运算
    0 ⋅ 0 = 0 0 ⋅ 1 = 0 1 ⋅ 0 = 0 1 ⋅ 1 = 1 \begin{align*} 0 \cdot 0 &= 0 \\ 0 \cdot 1 &= 0 \\ 1 \cdot 0 &= 0 \\ 1 \cdot 1 &= 1 \end{align*} 00011011=0=0=0=1

  • 或运算
    0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 1 \begin{align*} 0 + 0 &= 0 \\ 0 + 1 &= 1 \\ 1 + 0 &= 1 \\ 1 + 1 &= 1 \end{align*} 0+00+11+01+1=0=1=1=1

  • 非运算
    0 ‾ = 1 1 ‾ = 0 \begin{align*} \overline{0} &= 1 \\ \overline{1} &= 0 \end{align*} 01=1=0

2.2 逻辑变量和常量的运算

  • 0-1
    0 + A = A 1 + A = 1 0 ⋅ A = 0 1 ⋅ A = A \begin{align*} 0 + {A} &= {A} \\ 1 + {A} &= 1 \\ 0 \cdot {A} &= 0 \\ 1 \cdot {A} &= {A} \end{align*} 0+A1+A0A1A=A=1=0=A

  • 同一律
    A + A = A A ⋅ A = A \begin{align*} {A} + {A} &= {A} \\ {A} \cdot {A} &= {A} \end{align*} A+AAA=A=A

  • 互补律
    A + A ‾ = 1 A ⋅ A ‾ = 0 \begin{align*} {A} + \overline{A} &= 1 \\ {A} \cdot \overline{A} &= 0 \end{align*} A+AAA=1=0

  • 还原律
    A ‾ ‾ = A \begin{align*} \overline{\overline{A}} &= {A} \end{align*} A=A

2.3 与普通代数相似的定律

  • 交换律
    A + B = B + A A ⋅ B = B ⋅ A \begin{align*} {A} + {B} &= {B} + {A} \\ {A} \cdot {B} &= {B} \cdot {A} \end{align*} A+BAB=B+A=BA

  • 结合律
    ( A + B ) + C = A + ( B + C ) ( A ⋅ B ) ⋅ C = A ⋅ ( B ⋅ C ) \begin{align*} ({A} + {B}) + {C} &= {A} + ({B} + {C}) \\ ({A} \cdot {B}) \cdot {C} &= {A} \cdot ({B} \cdot {C}) \end{align*} (A+B)+C(AB)C=A+(B+C)=A(BC)

  • 分配律
    A ( B + C ) = A B + A C A + B C = ( A + B ) ( A + C ) \begin{align*} &{A}({B} + {C}) = {AB} + {AC} \\ &{A+BC} = {(A+B)(A+C)} \end{align*} A(B+C)=AB+ACA+BC=(A+B)(A+C)

  • 证明 A + B C = ( A + B ) ( A + C ) {A+BC}=(A+B)(A+C) A+BC=(A+B)(A+C)
    ( A + B ) ( A + C ) = A A + A C + B A + B C = A + A C + B A + B C = A ( 1 + C + B ) + B C = A + B C \begin{align*} &(A+B)(A+C) \\ &= AA + AC + BA + BC \\ &= A + AC + BA + BC \\ &= A(1+C+B) + BC \\ &= A + BC \end{align*} (A+B)(A+C)=AA+AC+BA+BC=A+AC+BA+BC=A(1+C+B)+BC=A+BC

2.4 摩尔定理(反演律)

A ⋅ B ‾ = A ‾ + B ‾ A ⋅ B ⋅ C . . . ‾ = A ‾ + B ‾ + C ‾ . . . \begin{align*} \overline{A \cdot B} &= \overline{A} + \overline{B} \\ \overline{A \cdot B \cdot C ...} &= \overline{A} + \overline{B} + \overline{C}... \end{align*} ABABC...=A+B=A+B+C...

2.5 吸收律

  • 示例
    A B + A B ‾ = A ( B + B ‾ ) = A A + A B = A ( 1 + B ) = A A + A ‾ B = ( A + A ‾ ) ( A + B ) = A + B \begin{align*} &{AB} + A\overline{B} \\ &= A(B+\overline{B}) \\ &= A \\ \\ &A + AB \\ &= A(1+B) \\ &= A \\ \\ &A + \overline{A}B \\ &= (A+\overline{A})(A+B) \\ &= A + B \end{align*} AB+AB=A(B+B)=AA+AB=A(1+B)=AA+AB=(A+A)(A+B)=A+B

  • 推广公式: A ‾ + A B = A ‾ + B \overline{A}+{AB}=\overline{A}+B A+AB=A+B

2.6 冗余律

A B + A ‾ C + B C = A B + A ‾ C A B + A ‾ C + B C = A B + A ‾ C + B C ( A + A ‾ ) = A B + A ‾ C + A B C + A ‾ B C = A B ( 1 + C + C ) + A ‾ C = A B + A ‾ C \begin{align*} &AB + \overline{A}C + BC = AB + \overline{A}C \\ \\ &AB + \overline{A}C + BC \\ &= AB + \overline{A}C + BC(A+\overline{A}) \\ &= AB + \overline{A}C + ABC + \overline{A}BC \\ &= AB(1+C+C) + \overline{A}C \\ &= AB + \overline{A}C \end{align*} AB+AC+BC=AB+ACAB+AC+BC=AB+AC+BC(A+A)=AB+AC+ABC+ABC=AB(1+C+C)+AC=AB+AC

  • 推广公式
    A B + A ‾ C + B C D . . . = A B + A ‾ C A B + A ‾ C + B C D . . . = ( A B + A ‾ C + B C ) + B C D . . . = A B + A ‾ C + B C ( 1 + D . . . ) = A B + A ‾ C + B C = A B + A ‾ C \begin{align*} &AB + \overline{A}C + BCD... = AB + \overline{A}C \\ \\ &AB + \overline{A}C + BCD... \\ &= (AB + \overline{A}C + BC)+ BCD... \\ &= AB + \overline{A}C + BC(1+D...) \\ &= AB + \overline{A}C + BC \\ &= AB + \overline{A}C \end{align*} AB+AC+BCD...=AB+ACAB+AC+BCD...=(AB+AC+BC)+BCD...=AB+AC+BC(1+D...)=AB+AC+BC=AB+AC

三、常用公式

  • A B ‾ + A ‾ B ‾ = A ‾ ⋅ B ‾ + A B \overline{A\overline{B} + \overline{A}B}=\overline{A}\cdot \overline{B}+AB AB+AB=AB+AB
    A B ‾ + A ‾ B ‾ = A B ‾ ‾ ⋅ A ‾ B ‾ = ( A ‾ + B ) ( A + B ‾ ) = A ‾ A + A ‾ ⋅ B ‾ + B A + B B ‾ = A ‾ ⋅ B ‾ + B A \begin{align*} &\overline{A\overline{B} + \overline{A}B} \\ &= \overline{A\overline{B}} \cdot \overline{\overline{A}B} \\ &= (\overline{A}+B)(A+\overline{B}) \\ &= \overline{A}A + \overline{A} \cdot \overline{B} + BA + B\overline{B} \\ &= \overline{A} \cdot \overline{B} + BA \end{align*} AB+AB=ABAB=(A+B)(A+B)=AA+AB+BA+BB=AB+BA

  • 实质: A B ‾ + A ‾ B ‾ = A ⨁ B ‾ = A ⨀ B = A ‾ ⋅ B ‾ + A B \overline{A\overline{B} + \overline{A}B}=\overline{A\bigoplus{B}}=A\bigodot{B}=\overline{A}\cdot\overline{B}+AB AB+AB=AB=AB=AB+AB

  • 推广公式

    • 如果前面有原变量A,后面有变量 A ‾ \overline{A} A,那就可以将剩余的变量取反
    • A B + A ‾ C ‾ = A B ‾ + A ‾ ⋅ C ‾ \overline{AB+\overline{A}C}=A\overline{B}+{\overline{A}\cdot\overline{C}} AB+AC=AB+AC

3.1 异或运算的一些公式

  1. 结合律: A ⨁ B = B ⨁ A {A}\bigoplus{B}={B}\bigoplus{A} AB=BA
  2. 结合律: ( A ⨁ B ) ⨁ C = A ⨁ ( B ⨁ C ) ({A}\bigoplus{B})\bigoplus{C}={A}\bigoplus({B}\bigoplus{C}) (AB)C=A(BC)
  3. 分配律: A ⋅ ( B ⨁ C ) = A B ⨁ A C {A}\cdot({{B}\bigoplus{C}})={AB}\bigoplus{AC} A(BC)=ABAC
  4. 变量和常量的异或运算
    A ⨁ 1 = A ‾ A ⨁ 0 = A A ⨁ A = 0 \begin{align*} &{A}\bigoplus1 = \overline{A} \\ &{A}\bigoplus0 = A \\ &{A}\bigoplus{A} = 0 \end{align*} A1=AA0=AAA=0
  5. 因果互换律
    A ⨁ B = C ⇒ { A ⨁ C = B B ⨁ C = A A\bigoplus{B} = C \Rightarrow \begin{cases} A\bigoplus{C} = B\\ B\bigoplus{C} = A \end{cases} AB=C{AC=BBC=A

四、基本规则

4.1 代入规则

  • A + A ‾ B = A + B A+\overline{A}B=A+B A+AB=A+B
    • A A A 均用 A ‾ \overline{A} A 代替得到 A ‾ + A B \overline{A}+AB A+AB ,再用吸收律得到 A ‾ + B \overline{A}+B A+B
    • B B B 均用 C C C 代替得到 A + A ‾ C A+\overline{A}C A+AC ,再用吸收律得到 A + C A+C A+C
  • A + B ‾ = A ‾ ⋅ B ‾ \overline{A+B}=\overline{A}\cdot\overline{B} A+B=AB
    • B B B 均用 B + C B+C B+C 代替得到 A + B + C ‾ = A ‾ ⋅ B + C ‾ \overline{A+B+C}=\overline{A}\cdot\overline{B+C} A+B+C=AB+C ,再使用摩尔定理得到 A + B + C ‾ = A ‾ ⋅ B ‾ ⋅ C ‾ \overline{A+B+C}=\overline{A}\cdot\overline{B}\cdot\overline{C} A+B+C=ABC

4.2 反演规则

  • 对任意一个逻辑函数式 Y Y Y ,将式中所有 ⋅ \cdot 换成 + + + + + + 换成 ⋅ \cdot 0 0 0 换成 1 1 1 1 1 1 换成 0 0 0 ,原变量换成反变量,反变量换成原变量,则得到原逻辑函数的反函数 Y ‾ \overline{Y} Y

  • 变换时需注意

    • 不能改变原来的运算顺序
    • 原变量换成反变量,反变量换成原变量,只针对单个变量有效,面对长非号保持不变
  • 示例(注意长非号是不变的)
    Y = A ⋅ B + C ‾ + C D ⇒ Y ‾ = ( A ‾ + B ‾ ⋅ C ‾ ‾ ) ⋅ ( C ‾ + D ‾ ) Y = A B ‾ + C ‾ + D ‾ + E ⇒ Y ‾ = ( A ‾ + B ) ⋅ C ‾ ‾ ⋅ D ‾ ‾ ⋅ E ‾ \begin{align*} &Y = A \cdot \overline{B+C} + CD \Rightarrow \overline{Y} = (\overline{A} + \overline{\overline{B} \cdot \overline{C}}) \cdot (\overline{C} + \overline{D}) \\ \\ &Y = \overline{\overline{A\overline{B} + C} + D} + E \Rightarrow \overline{Y} = \overline{\overline{(\overline{A} + {B}) \cdot \overline{C}} \cdot \overline{D}} \cdot \overline{E} \end{align*} Y=AB+C+CDY=(A+BC)(C+D)Y=AB+C+D+EY=(A+B)CDE

4.3 对偶规则

  • 对任意一个逻辑函数式 Y Y Y ,将式中所有 ⋅ \cdot 换成 + + + + + + 换成 ⋅ \cdot 0 0 0 换成 1 1 1 1 1 1 换成 0 0 0 ,则得到原逻辑函数的对偶函数 Y ′ Y' Y

  • 交换时需注意

    • 不能改变原来的运算顺序
    • 变量上的非号均不变
  • 示例
    0 ⋅ 0 = 0 ⇒ 1 + 1 = 1 A + A ‾ = 1 ⇒ A ⋅ A ‾ = 0 A ( B + C ) = A B + A C ⇒ A + B C = ( A + B ) ( A + C ) Y = A B ‾ + C ‾ + D ‾ + E ⇒ Y ′ = ( A + B ‾ ) ⋅ C ‾ ⋅ D ‾ ⋅ E \begin{align*} 0 \cdot 0 = 0 &\Rightarrow 1 + 1 = 1 \\ A + \overline{A} = 1 &\Rightarrow A \cdot \overline{A} = 0 \\ \\ A(B+C) = AB + AC &\Rightarrow A + BC = (A+B)(A+C) \\ \\ Y = \overline{\overline{A\overline{B} + C} + D} + E &\Rightarrow Y' = \overline{\overline{(A+\overline{B}) \cdot C} \cdot D} \cdot E \end{align*} 00=0A+A=1A(B+C)=AB+ACY=AB+C+D+E1+1=1AA=0A+BC=(A+B)(A+C)Y=(A+B)CDE

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值