一、逻辑运算
二、基本定律
2.1 常量间的运算
-
与运算
0 ⋅ 0 = 0 0 ⋅ 1 = 0 1 ⋅ 0 = 0 1 ⋅ 1 = 1 \begin{align*} 0 \cdot 0 &= 0 \\ 0 \cdot 1 &= 0 \\ 1 \cdot 0 &= 0 \\ 1 \cdot 1 &= 1 \end{align*} 0⋅00⋅11⋅01⋅1=0=0=0=1 -
或运算
0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 1 \begin{align*} 0 + 0 &= 0 \\ 0 + 1 &= 1 \\ 1 + 0 &= 1 \\ 1 + 1 &= 1 \end{align*} 0+00+11+01+1=0=1=1=1 -
非运算
0 ‾ = 1 1 ‾ = 0 \begin{align*} \overline{0} &= 1 \\ \overline{1} &= 0 \end{align*} 01=1=0
2.2 逻辑变量和常量的运算
-
0-1
律
0 + A = A 1 + A = 1 0 ⋅ A = 0 1 ⋅ A = A \begin{align*} 0 + {A} &= {A} \\ 1 + {A} &= 1 \\ 0 \cdot {A} &= 0 \\ 1 \cdot {A} &= {A} \end{align*} 0+A1+A0⋅A1⋅A=A=1=0=A -
同一律
A + A = A A ⋅ A = A \begin{align*} {A} + {A} &= {A} \\ {A} \cdot {A} &= {A} \end{align*} A+AA⋅A=A=A -
互补律
A + A ‾ = 1 A ⋅ A ‾ = 0 \begin{align*} {A} + \overline{A} &= 1 \\ {A} \cdot \overline{A} &= 0 \end{align*} A+AA⋅A=1=0 -
还原律
A ‾ ‾ = A \begin{align*} \overline{\overline{A}} &= {A} \end{align*} A=A
2.3 与普通代数相似的定律
-
交换律
A + B = B + A A ⋅ B = B ⋅ A \begin{align*} {A} + {B} &= {B} + {A} \\ {A} \cdot {B} &= {B} \cdot {A} \end{align*} A+BA⋅B=B+A=B⋅A -
结合律
( A + B ) + C = A + ( B + C ) ( A ⋅ B ) ⋅ C = A ⋅ ( B ⋅ C ) \begin{align*} ({A} + {B}) + {C} &= {A} + ({B} + {C}) \\ ({A} \cdot {B}) \cdot {C} &= {A} \cdot ({B} \cdot {C}) \end{align*} (A+B)+C(A⋅B)⋅C=A+(B+C)=A⋅(B⋅C) -
分配律
A ( B + C ) = A B + A C A + B C = ( A + B ) ( A + C ) \begin{align*} &{A}({B} + {C}) = {AB} + {AC} \\ &{A+BC} = {(A+B)(A+C)} \end{align*} A(B+C)=AB+ACA+BC=(A+B)(A+C) -
证明 A + B C = ( A + B ) ( A + C ) {A+BC}=(A+B)(A+C) A+BC=(A+B)(A+C)
( A + B ) ( A + C ) = A A + A C + B A + B C = A + A C + B A + B C = A ( 1 + C + B ) + B C = A + B C \begin{align*} &(A+B)(A+C) \\ &= AA + AC + BA + BC \\ &= A + AC + BA + BC \\ &= A(1+C+B) + BC \\ &= A + BC \end{align*} (A+B)(A+C)=AA+AC+BA+BC=A+AC+BA+BC=A(1+C+B)+BC=A+BC
2.4 摩尔定理(反演律)
A ⋅ B ‾ = A ‾ + B ‾ A ⋅ B ⋅ C . . . ‾ = A ‾ + B ‾ + C ‾ . . . \begin{align*} \overline{A \cdot B} &= \overline{A} + \overline{B} \\ \overline{A \cdot B \cdot C ...} &= \overline{A} + \overline{B} + \overline{C}... \end{align*} A⋅BA⋅B⋅C...=A+B=A+B+C...
2.5 吸收律
-
示例
A B + A B ‾ = A ( B + B ‾ ) = A A + A B = A ( 1 + B ) = A A + A ‾ B = ( A + A ‾ ) ( A + B ) = A + B \begin{align*} &{AB} + A\overline{B} \\ &= A(B+\overline{B}) \\ &= A \\ \\ &A + AB \\ &= A(1+B) \\ &= A \\ \\ &A + \overline{A}B \\ &= (A+\overline{A})(A+B) \\ &= A + B \end{align*} AB+AB=A(B+B)=AA+AB=A(1+B)=AA+AB=(A+A)(A+B)=A+B -
推广公式: A ‾ + A B = A ‾ + B \overline{A}+{AB}=\overline{A}+B A+AB=A+B
2.6 冗余律
A B + A ‾ C + B C = A B + A ‾ C A B + A ‾ C + B C = A B + A ‾ C + B C ( A + A ‾ ) = A B + A ‾ C + A B C + A ‾ B C = A B ( 1 + C + C ) + A ‾ C = A B + A ‾ C \begin{align*} &AB + \overline{A}C + BC = AB + \overline{A}C \\ \\ &AB + \overline{A}C + BC \\ &= AB + \overline{A}C + BC(A+\overline{A}) \\ &= AB + \overline{A}C + ABC + \overline{A}BC \\ &= AB(1+C+C) + \overline{A}C \\ &= AB + \overline{A}C \end{align*} AB+AC+BC=AB+ACAB+AC+BC=AB+AC+BC(A+A)=AB+AC+ABC+ABC=AB(1+C+C)+AC=AB+AC
- 推广公式
A B + A ‾ C + B C D . . . = A B + A ‾ C A B + A ‾ C + B C D . . . = ( A B + A ‾ C + B C ) + B C D . . . = A B + A ‾ C + B C ( 1 + D . . . ) = A B + A ‾ C + B C = A B + A ‾ C \begin{align*} &AB + \overline{A}C + BCD... = AB + \overline{A}C \\ \\ &AB + \overline{A}C + BCD... \\ &= (AB + \overline{A}C + BC)+ BCD... \\ &= AB + \overline{A}C + BC(1+D...) \\ &= AB + \overline{A}C + BC \\ &= AB + \overline{A}C \end{align*} AB+AC+BCD...=AB+ACAB+AC+BCD...=(AB+AC+BC)+BCD...=AB+AC+BC(1+D...)=AB+AC+BC=AB+AC
三、常用公式
-
A B ‾ + A ‾ B ‾ = A ‾ ⋅ B ‾ + A B \overline{A\overline{B} + \overline{A}B}=\overline{A}\cdot \overline{B}+AB AB+AB=A⋅B+AB
A B ‾ + A ‾ B ‾ = A B ‾ ‾ ⋅ A ‾ B ‾ = ( A ‾ + B ) ( A + B ‾ ) = A ‾ A + A ‾ ⋅ B ‾ + B A + B B ‾ = A ‾ ⋅ B ‾ + B A \begin{align*} &\overline{A\overline{B} + \overline{A}B} \\ &= \overline{A\overline{B}} \cdot \overline{\overline{A}B} \\ &= (\overline{A}+B)(A+\overline{B}) \\ &= \overline{A}A + \overline{A} \cdot \overline{B} + BA + B\overline{B} \\ &= \overline{A} \cdot \overline{B} + BA \end{align*} AB+AB=AB⋅AB=(A+B)(A+B)=AA+A⋅B+BA+BB=A⋅B+BA -
实质: A B ‾ + A ‾ B ‾ = A ⨁ B ‾ = A ⨀ B = A ‾ ⋅ B ‾ + A B \overline{A\overline{B} + \overline{A}B}=\overline{A\bigoplus{B}}=A\bigodot{B}=\overline{A}\cdot\overline{B}+AB AB+AB=A⨁B=A⨀B=A⋅B+AB
-
推广公式
- 如果前面有原变量A,后面有变量 A ‾ \overline{A} A,那就可以将剩余的变量取反
- A B + A ‾ C ‾ = A B ‾ + A ‾ ⋅ C ‾ \overline{AB+\overline{A}C}=A\overline{B}+{\overline{A}\cdot\overline{C}} AB+AC=AB+A⋅C
3.1 异或运算的一些公式
- 结合律: A ⨁ B = B ⨁ A {A}\bigoplus{B}={B}\bigoplus{A} A⨁B=B⨁A
- 结合律: ( A ⨁ B ) ⨁ C = A ⨁ ( B ⨁ C ) ({A}\bigoplus{B})\bigoplus{C}={A}\bigoplus({B}\bigoplus{C}) (A⨁B)⨁C=A⨁(B⨁C)
- 分配律: A ⋅ ( B ⨁ C ) = A B ⨁ A C {A}\cdot({{B}\bigoplus{C}})={AB}\bigoplus{AC} A⋅(B⨁C)=AB⨁AC
- 变量和常量的异或运算
A ⨁ 1 = A ‾ A ⨁ 0 = A A ⨁ A = 0 \begin{align*} &{A}\bigoplus1 = \overline{A} \\ &{A}\bigoplus0 = A \\ &{A}\bigoplus{A} = 0 \end{align*} A⨁1=AA⨁0=AA⨁A=0 - 因果互换律
A ⨁ B = C ⇒ { A ⨁ C = B B ⨁ C = A A\bigoplus{B} = C \Rightarrow \begin{cases} A\bigoplus{C} = B\\ B\bigoplus{C} = A \end{cases} A⨁B=C⇒{A⨁C=BB⨁C=A
四、基本规则
4.1 代入规则
-
A
+
A
‾
B
=
A
+
B
A+\overline{A}B=A+B
A+AB=A+B
- A A A 均用 A ‾ \overline{A} A 代替得到 A ‾ + A B \overline{A}+AB A+AB ,再用吸收律得到 A ‾ + B \overline{A}+B A+B
- B B B 均用 C C C 代替得到 A + A ‾ C A+\overline{A}C A+AC ,再用吸收律得到 A + C A+C A+C
-
A
+
B
‾
=
A
‾
⋅
B
‾
\overline{A+B}=\overline{A}\cdot\overline{B}
A+B=A⋅B
- B B B 均用 B + C B+C B+C 代替得到 A + B + C ‾ = A ‾ ⋅ B + C ‾ \overline{A+B+C}=\overline{A}\cdot\overline{B+C} A+B+C=A⋅B+C ,再使用摩尔定理得到 A + B + C ‾ = A ‾ ⋅ B ‾ ⋅ C ‾ \overline{A+B+C}=\overline{A}\cdot\overline{B}\cdot\overline{C} A+B+C=A⋅B⋅C
4.2 反演规则
-
对任意一个逻辑函数式 Y Y Y ,将式中所有 ⋅ \cdot ⋅ 换成 + + + , + + + 换成 ⋅ \cdot ⋅ , 0 0 0 换成 1 1 1 , 1 1 1 换成 0 0 0 ,原变量换成反变量,反变量换成原变量,则得到原逻辑函数的反函数 Y ‾ \overline{Y} Y
-
变换时需注意
- 不能改变原来的运算顺序
- 原变量换成反变量,反变量换成原变量,只针对单个变量有效,面对长非号保持不变
-
示例(注意长非号是不变的)
Y = A ⋅ B + C ‾ + C D ⇒ Y ‾ = ( A ‾ + B ‾ ⋅ C ‾ ‾ ) ⋅ ( C ‾ + D ‾ ) Y = A B ‾ + C ‾ + D ‾ + E ⇒ Y ‾ = ( A ‾ + B ) ⋅ C ‾ ‾ ⋅ D ‾ ‾ ⋅ E ‾ \begin{align*} &Y = A \cdot \overline{B+C} + CD \Rightarrow \overline{Y} = (\overline{A} + \overline{\overline{B} \cdot \overline{C}}) \cdot (\overline{C} + \overline{D}) \\ \\ &Y = \overline{\overline{A\overline{B} + C} + D} + E \Rightarrow \overline{Y} = \overline{\overline{(\overline{A} + {B}) \cdot \overline{C}} \cdot \overline{D}} \cdot \overline{E} \end{align*} Y=A⋅B+C+CD⇒Y=(A+B⋅C)⋅(C+D)Y=AB+C+D+E⇒Y=(A+B)⋅C⋅D⋅E
4.3 对偶规则
-
对任意一个逻辑函数式 Y Y Y ,将式中所有 ⋅ \cdot ⋅ 换成 + + + , + + + 换成 ⋅ \cdot ⋅ , 0 0 0 换成 1 1 1 , 1 1 1 换成 0 0 0 ,则得到原逻辑函数的对偶函数 Y ′ Y' Y′
-
交换时需注意
- 不能改变原来的运算顺序
- 变量上的非号均不变
-
示例
0 ⋅ 0 = 0 ⇒ 1 + 1 = 1 A + A ‾ = 1 ⇒ A ⋅ A ‾ = 0 A ( B + C ) = A B + A C ⇒ A + B C = ( A + B ) ( A + C ) Y = A B ‾ + C ‾ + D ‾ + E ⇒ Y ′ = ( A + B ‾ ) ⋅ C ‾ ⋅ D ‾ ⋅ E \begin{align*} 0 \cdot 0 = 0 &\Rightarrow 1 + 1 = 1 \\ A + \overline{A} = 1 &\Rightarrow A \cdot \overline{A} = 0 \\ \\ A(B+C) = AB + AC &\Rightarrow A + BC = (A+B)(A+C) \\ \\ Y = \overline{\overline{A\overline{B} + C} + D} + E &\Rightarrow Y' = \overline{\overline{(A+\overline{B}) \cdot C} \cdot D} \cdot E \end{align*} 0⋅0=0A+A=1A(B+C)=AB+ACY=AB+C+D+E⇒1+1=1⇒A⋅A=0⇒A+BC=(A+B)(A+C)⇒Y′=(A+B)⋅C⋅D⋅E