严格次小生成树的定义
定义:严格次小生成树就是比最小生成树边权和大但又比其余任意生成树(除自己和最小生成树)都小的一颗生成树。
严格次小生成树的算法分析
暴力算法
根据严格次小生成树的定义可以知道我们可以枚举所有可能的生成树统计边权和的大小,然后在比较就可求出次小生成树。但看了看机房dalao WTY 的博客,生成树的数量级是 O O O( n 3 n^3 n3)级别的。显然不够优秀,所以我们需要对这个算法进行优化。
优化
引理:一定存在一棵严格次小生成树,使得它与某棵最小生成树仅有一条边是不同的.
我们现在来证明这个引理。
我们考虑反证法,假设一颗严格次小生成树有k ( ≥ 2 ) (\ge2) (≥2)条边和最小生成树不同,我们假设下图中的 s 2 s2 s2是这个图的严格次小生成树, s 1 s1 s1是这个图的最小生成树,现在我们断开 s 2 s2 s2中与 s 1 s1 s1中不公共的所有边,那么这个图就被划分成了 k + 1 k+1 k+1个不连通的部分。此时我们在选取 k k k条位于最小生成树中的边把 k + 1 k+1 k+1个部分连接起来,这样我们就得到了一颗新的生成树 s 3 s3 s3。此时我们就可以很显然地知道 s 1 < s 3 < s 2 s1<s3<s2 s1<s3<s2显然这和次小生成树的定义矛盾。所以假设不成立,因此这个引理成立。
这是一个非常有用的引理,知道它之后我们就可以继续优化我们的算法了。我们可以先把最小生成树给建出来,然后枚举所有不属于最小生成树边集的边,找到那个不属于最小生成树但属于次小生成树的边我们就做完了。
具体来说就是枚举非树边v,然后把这条边加入到树中,这时树上就形成了一个环(设环的边集为 L L L)。然后我们断掉这个里面最大的边(但要求选到的边不能是 v v v),就能得到含有的生成树中边权最小的生成树了。找到所有这样的生成树将权值取 m i n min min就是答案。
但是如果我们暴力找需要短那条边那效率还是太低了,所以我们考虑继续优化。采用树上倍增的方法,定义 1 1 1为根节点,处理出一个数组存储每个点向上 2 i 2^i 2i条边的最大值和次大值,在寻找的时候,通过倍增来维护这个数组,这样就能快速找到需要断掉的边了(找环就是求加进去两个点的 l c a lca lca