【Pix4d精品教程】Pix4d空三后处理:点云分类与过滤、DSM精编生成DEM、生成等高线案例详解

本文详细介绍了Pix4d软件在空三后处理中的点云分类与分配、DSM精编生成DEM以及等高线的生成过程。点云分类包括地面、道路、植被和建筑等类型,通过点云分配得到精确的地面点云。生成DEM需重新运行处理,确保DSM质量。最后,设置等高线参数生成等高线,用于地形分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《无人机航空摄影测量精品教程》合集目录(Pix4d、CC、EPS、PhotoScan、Inpho)

DEM结果预览:
在这里插入图片描述等高线结果预览:

在这里插入图片描述

Pix4d内业空三结束后,会生成点云,DOM和DSM等产品,一般情况下,DOM精度不达标(如房屋边缘有噪点)的话,可以直接在镶嵌图编辑器进行DOM的编辑,然而后处理的主要的工作是点云的分类和DSM精编生成DEM,进而才能生成精准的等高线,提取特征高程点。那么怎样进行点云分类,怎样精编DEM呢?本文就通过案例的形式进行讲解。


一、点云分类与分配<

### 无人机生成DEM的具体步骤 #### 准备阶段 为了确保最终生成高质量的DEM,在准备阶段需收集并整理好所需的影像资料和其他辅助数据。通常情况下,这些影像是由无人机携带相机按照预定航线拍摄而来。 #### 数据导入预处理 将获取到的无人机影像文件导入至Metashape软件中[^1]。在此过程中,还需确认所有必要的元数据一同被正确读取,特别是地理位置信息(POS)。如果缺少此类信息,则可通过自定义比例尺的方法来弥补这一不足之处[^4]。 #### 构建维模型 - **对齐照片**:使不同视角下的多张图片能够相互匹配,形成统一的间坐标体系。 - **建立密集点云**:基于成功配准的照片集构建出详细的维点位集合。这一步骤对于后续地形表面重建至关重要。 一旦完成了密集点云建设,即可进一步加工得到更精细结构化的表示形式——即角化网格或直接进入DEM生 成环节。 #### DEM生产 在具备了足够的几何基础之上,可以选择不同的方法来计算高度值从而完成DEM 的创建。具体来说,在 Metashape 中支持多种途径实现这一点,包括但不限于从点云、深度图或是现有网格提取海拔数值。 #### 质量控制优化 初步形成的DEM往往还需要经历一轮细致的质量审查,以剔除异常值和噪声干扰项。必要时可借助其他专业工具如GlobalMapper来进行补充性的编辑调整工作,例如针对特定区域实施人工干预式的修补操作后再重新导出为标准格式的数据文件[^2]。 #### 结果验证应用 最后,应当仔细检验所生产的DEM是否满足预期精度要求,并考虑将其应用于实际场景之中。用户可以在正交视图模式下直观查看重建效果以便于评估整体质量状况[^3]。 ```python import metashape doc = metashape.Document() chunk = doc.addChunk() # 导入照片 photos_path = "path/to/your/drone_photos" photo_files = list(metashape.FileFilters.Images()) for file in photo_files: chunk.addPhotos([file]) # 对齐照片 chunk.matchPhotos(downscale=1, generic_preselection=True) # 建立密集点云 chunk.buildDenseCloud(max_neighbors=80, quality="ultra_quality") # 创建DEM dem = chunk.rasterize(chunk.dense_cloud, resolution=0.5) ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刘一哥GIS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值